Cellular Dynamics and ‘MOrPF-genesis’ in Biofabrication and Bioprinting
Yan Yan Shery Huang,
University Lecturer in Bioengineering,
University of Cambridge
Dynamic and time-dependent processes are inherent in living matters. With the aim to fabricate advanced biological systems and products, it is important to consider how cells dynamically interact with their ‘biofabrication’ protocol and environment. This talk will focus on three example cases. First, it will present process visualization of cell extrusion deposition through a high-resolution nozzle. In this context, we observed the motions of cells were overwhelmed by cellular re-organization events in a nozzle, including aggregation and sedimentation. Thus, the cells do not follow the flow paths purely driven by a laminar fluid flow within a narrow tip. In the second example, the talk will present how cells could dynamically adjust their shapes during migration, in response to different microfibre patterns from straight to curly. Key morphological features such as the variation of cells’ minor axis were identified for understanding cell migration in fibril matrices. In the third example, it will present how integrating self-assembly and biofabrication could lead an organoid engineering approach termed Multi-Organoid Patterning and Fusion (MOrPF). MOrPF is used to assemble scaffold-free macroscale airway tubes, leading to flowable organoid-on-a-chip, and branching tubular structures. Together, our studies might provide guiding principles for optimizing biofabrication processes of cell-laden constructs.
|
|