Decellularized Extracellular Matrix-based Bioinks for Printing Human Tissues
Jinah Jang,
Assistant Professor,
POSTECH
Recent advances in biofabrication techniques have allowed for the fabrication of cardiac tissue models that are similar to the human heart in terms of their structure (e.g., volumetric scale and anatomy) and function (e.g., contractile and electrical properties). The importance of developing techniques for assessing the characteristics of 3D cardiac substitutes in real time without damaging their structures has also been emphasized. In particular, the heart has two primary mechanisms for transporting blood through the body: contractility and an electrical system based on intra- and extracellular calcium ion exchange. This talk will discuss how 3D cardiovascular tissue testing platform could be generated by integrating the concept of bioprinting-assisted tissue engineering and electrical sensing platforms. Combined with recent advances in human pluripotent stem cell technologies, printed human tissues could serve as an enabling platform for studying complex physiology in tissue and organ contexts of individuals.
|
|