Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Bioprinting and Bioink Innovations for 3D-Tissues 2022

Bioprinting and Bioink Innovations for 3D-Tissues 2022 Agenda



Additive Manufacturing and Nanomaterials-based Platforms For Bone Modeling and Regeneration: Controlling Cell Fate by Combined Compositional and Morphological Cues

Gabriela Graziani, Assistant Professor, Politecnico di Milano

Bone is a hierarchical tissue, having complex morphology and composition. Hence, new approaches are needed to mimic its characteristics, to obtain bone models as well as for its regeneration. To fulfill these aims, a scaffold or models shall  reproduce as closely as possible the composition of native bone, because mimicking the native tissue permits boosting bone regeneration, and because bone apatite has a critical role in modulating the behavior of both healthy and tumor cells in the models. At the same time, morphological characteristics (i.e. porosity, surface morphology and roughness) are fundamental to determine the mechanical behavior of the model and to provide cues to which cells can react and that influence their morphology, adhesion, proliferation and differentiation. Here we propose new routes for obtaining bone-mimetic materials, by combining additive manufacturing techniques (3d printing and electrospinning) and plasma-assisted deposition of nano-structured coatings (Ionized Jet Deposition). By these techniques, we reproduce the characteristics of the native tissue and guide its regeneration, exploiting biomimicry, morphological and compositional cues and we study their interactions with healthy (MSCs) and tumor (SAOS-2) cells, for applications in bone regeneration and modeling.