Droplet-Based Microfluidics to Detect Cancer Circulating Biomarkers: From Technology Development to Clinical Validation
Valérie Taly,
CNRS Research Director, Group Leader and Professor,
Université Paris Cité
Droplet-based microfluidics has led to the development of highly powerful tools with great potential in High-Throughput Screening where individual assays are compartmentalized within aqueous droplets acting as independent microreactors. Thanks to the combination of a decrease of assay volume and an increase of throughput, this technology goes beyond the capacities of conventional screening systems. Added to the flexibility and versatility of platform designs, such progresses in the manipulation of sub-nanoliter droplets has allowed to dramatically increase experimental level of control and precision. The presentation will aim at demonstrating through selected example, the great potential of this technology for biotechnology and cancer research. First, we will show how by combining microfluidic systems and clinical advances in molecular diagnostic we have developed an original method to perform millions of single molecule PCR in parallel to detect and quantify a minority of target sequences in complex mixture of DNA with a sensitivity unreachable by conventional procedures. Technological development allowing for the multiplex detection of cancer biomarkers will be presented. The presentation will also illustrate the pertinence of the developed procedures to overcome clinical oncology challenges, the results of several clinical studies will be presented. In particular, applications of droplet-based digital PCR to the follow-up of both advanced and localized cancers will be presented.
|
|