Welcome and Introduction by Conference Chairperson -- Scope of the Conference and Topics Covered + Modular Design Workflows for 3D Printed Microfluidics
Noah Malmstadt,
Professor of Chemical Engineering and Materials Science,
University of Southern California
3D printing brings with it a plethora of advantages for microfluidic applications. Principle among these are rapid prototyping, iterative design, and the ability to avoid the cost and overhead of cleanrooms. However, there is also an inherent advantage in being able to design and build devices in a truly three-dimensional, rather than layer-by-layer, geometry. One simple domain in which the advantages of true 3D routing are clear is in mixing. Control over a 3D geometry allows for multiple complex mixing configurations--herringbones, relamination mixers, chaotic advection--to be trivially constructed and recombined.
We have used these principles of 3D design to construct devices and systems for bioanalytical assays, for manufacturing biomaterials, and for industrial-scale manufacturing of novel materials. This talk will examine all of these applications and the manner in which 3d-centric microfluidic design can enable them.
|
|