Fatah Kashanchi,
Professor and Director of Research, Lab of Molecular Virology
For the past eighteen years Kashanchi lab has been interested in understanding the mechanism of viral gene expression in human viruses and how the virus and the host control the dynamics of fundamental machineries needed for viral replication and/or host survival. They also have ample experience with biochemical pathways that leads to transcription and chromatin remolding using in vitro reconstituted machineries. These complexes with epigenetic modifications utilize host signaling events and therapeutic targets that control viral replication. In recent years, they have also started focusing on Extracellular vesicles (i.e., exosomes) mainly from latent virally infected cells. These cells remain in the body for a long period of time can be extended to the life of a person (i.e., CNS cells). These latent cells produce exosomes that carry markers of the infection including RNA and protein sequences specific to a given virus. The lab for the first time showed that viral release and exosome release have overlapping biogenesis in the ESCRT pathway. For instance, HIV-1 latent cells utilize ESCRT-I for viral release, and ESCRT-II for exosomal release. Using in vitro and in vivo (both patient samples and animal models), the lab has found that exosomes from HIV-1 infected cells carry short non-coding RNAs (i.e., TAR) which regulate TLR3 and other pathways in the recipient cells. Similar results were also observed from other neuro-tropic RNA viral infections including HTLV-1, Ebola, RVFV, SARS, and Zika infection.
|
|
|