Bioanalytical Applications of Modular 3D Microfluidic Systems
Noah Malmstadt, Professor of Chemical Engineering and Materials Science, University of Southern California
Assembly of microfluidic systems from modular 3D-printed components enables an innovative and powerful design workflow. While traditional fabrication approaches require design and fabrication of monolithic integrated devices, a modular approach allows for design and optimization of individual system elements. Final system design then becomes a simple iterative process based on assembling these elements by hand. An additional strength of a 3D-printed modular approach is the capacity to seamlessly integrate off-the-shelf electromechanical components into the modules. We have recently demonstrated integration of thermal sensors, optical sensors, and electromagnets into 3D-printed fluidic modules. These integrated components facilitate an array of tasks including flow rate detection, calorimetry, droplet counting, bioassay readout, and bead-based separations. Together with strategies for controlling the surface chemistry of 3D-printed parts and implementing efficient in-line mixing, these active modules form the foundation for designing and building complex integrated bioanalytical systems.
|
|