Mapping Functional Effects of Common Genetic Variants in IPS Derived Immune Cells
Daniel Gaffney, Group Leader, Wellcome Trust Sanger Institute
Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterisation of many existing iPSC lines limits their potential use for research and therapy. Here, we describe the systematic generation, genotyping and phenotyping of 522 open access human iPSCs derived from 189 healthy male and female individuals as part of the Human Induced Pluripotent Stem Cells Initiative (HipSci: http://www.hipsci.org). Our study provides a comprehensive picture of the major sources of genetic and phenotypic variation in iPSCs and establishes their suitability for use in genetic studies of complex human traits and cancer. Using a combination of genome-wide analyses we find that 5-25% of the variation in different iPSC phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. We also assess the phenotypic effects of rare, genomic copy number mutations that are recurrently seen following iPSC reprogramming and present an initial map of common regulatory variants affecting the transcriptome of pluripotent cells in humans.
|
|