Exploring the Biophysics of Circulating Tumor Cell Clusters Using Microfluidics
Shannon Stott, Assistant Professor, Massachusetts General Hospital & Harvard Medical School
Advances in microfluidic technologies, biomaterials and molecular profiling have propelled the rapid growth and interest in achieving a ‘liquid biopsy’ in cancer. As malignant tumors grow, they will aggressively invade surrounding tissue due to rapidly dividing cancer cells that are nourished by an ample blood supply. As these cancer cells are multiplying, individual circulating tumor cells (CTCs) are released into the blood stream at very low numbers (1 in a billion), but are highly desirable due to their molecular cargo. In addition, thousands of tiny particles from the tumor will enter the blood stream, referred to as exosomes, which also contain genetic information about the tumor. Larger aggregates or clusters of tumor cells are thought to break off from the most aggressive cancers. Through a collaborative effort between bioengineers, biologists, and clinicians, my laboratory at Massachusetts General Hospital has developed microfluidic devices to isolate these rare circulating biomarkers from whole blood. Data from these devices will be presented with a focus on our recent effort to characterize the biophysics of clusters of CTCs and what the dynamics of their behavior might mean for understanding their role in metastasis.
|
|