Jet-based Bioprinting: Implementation, Process Dynamics, and Process-Induced Cell Injury
Yong Huang, Professor, University of Florida
Maskless jet-based (including laser- and inkjet-based) three-dimensional (3D) cell bioprinting is a revolutionary advance for printing arbitrary cell patterns as well as creating heterogeneous living constructs. Unfortunately, process-induced thermomechanical injury to cells as well as other biomaterials during printing still poses a significant challenge to ensuring satisfactory post-transfer cell viability. Using a representative laser bioprinting technology (laser-induced forward transfer) as a jet-based model system, we have been addressing the aforementioned printing-induced cell injury challenge by studying the process-induced cell thermomechanical loading during the cell droplet formation and landing processes and the post-transfer cell viability based on the process-induced thermomechanical loading. In this talk, the perspective of ongoing bioprinting research is first introduced. Then the modeling of the laser-induced cellular droplet formation and landing processes is discussed. The relationship between the mechanical loading information and the post-transfer cell injury/viability is further established through an apoptosis signaling pathway-based modeling approach. Finally, this talk shares some thoughts regarding basic scientific challenges during bioprinting.
|
|