Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences 3D-Bioprinting, Tissue Engineering and Synthetic Biology

Abstract



Perfusion Directed 3D-Bone Mineralization

Pranav Soman, Professor, Biomedical and Chemical Engineering , Syracuse University

An inherent challenge in conventional tissue engineering strategies is the ability to efficiently deliver nutrients throughout the thickness of a complex, physiologically relevant biomimetic construct. In lieu of adequate interstitial perfusion, cellular viability and physiological function is compromised. In this work, we will present the creation of structurally supported, perfusable hydrogels capable of growing bone in user defined directions. Briefly, bone-like human osteosarcoma cells were encapsulated inside UV cross-linkable gelatin methacrylate (GelMA) hydrogels, and this cell-hydrogel mixture was casted onto a 3D printed poly(vinyl alcohol) (PVA) structure. PVA serves as a sacrificial material and was dissolved away to obtain hollow channels to facilitate the perfusion of media using a custom-made acrylonitrile butadiene styrene (ABS) bioreactor. Osteogenic media was perfused through the channels, and the radial zones of bone mineralization surrounding the channels were quantified.  This study demonstrates that user-defined 3D printed channels can be used to spatially control bone mineralization.


Add to Calendar ▼2017-03-16 00:00:002017-03-17 00:00:00Europe/London3D-Bioprinting, Tissue Engineering and Synthetic BiologySELECTBIOenquiries@selectbiosciences.com