Hydrogel Microarrays and Microfluidics – A Different Spin to Traditional SLA- and Extrusion-based 3D Printing Methods
Luiz Bertassoni, Assistant Professor, Oregon Health & Science University
Fabrication of three-dimensional tissues with controlled microarchitectures has been shown to enhance tissue functionality. 3D printing can be used to precisely position cells and cell-laden materials to generate controlled tissue architectures. Therefore, it represents an exciting alternative for organ fabrication. Our group has been interested in developing innovative printing-based technologies to improve our ability to regenerate tissues with improved function, as well as to engineer hydrogel based microfluidic devices. In this seminar, we will present SLA/DLP-based 3D printing methods to fabricate high-throughput screening platforms to probe mechanotransduction and geometry-controlled stem cell differentiation. Further, we will discuss recent methods our lab has developed to engineer vascularized tissue constructs, and 3D printed magnetically-gated hydrogel microfluidic chips. The use of these technologies in various regenerative applications will be discussed.
|
|