Bioprinting Pancreas-on-a-Chip
Ibrahim Ozbolat, Hartz Family Associate Professor of Engineering Science and Mechanics, Huck Institutes of the Life Sciences at Penn State University
Despite the recent achievements in cell-based therapies for curing type-1 diabetes (T1D), vascularization of beta (ß)-cell clusters is still a major roadblock as it is essential for long-term viability and function of ß-cells in vivo. In this research, we report micro-vascularization within engineered pancreatic islets (EPIs) made of rodent cells. EPIs cultured in fibrin constructs maintained their viability and functionality over time while non-vascularized EPIs could not retain their viability nor functionality. We then bioprinted the EPIs along with bioprinted macro-vascular network in a pancreas-on-a-chip model. Here we demonstrate a proof-of-concept study for a vascularized pancreas-on-a-chip model for the first time, where patient specific stem cell-derived human beta cells can be vascularized in the near future for an effective treatment of T1D.
|
|