PuLMo: Configurable tools for Human Lung Micro-Physiological Systems
Pulak Nath, Technical Staff Member, Applied Modern Physics, Los Alamos National Laboratory
PuLMo (Pulmonary Lung Models) represents a suite of enabling platforms to obtain user defined and integrated lung micro-physiological models, which has received an R&D100 award in 2016. A stepwise approach was taken to develop a suite of micro-engineered units to enable configurable and integrated MPS models for drug toxicity analysis. PuLMo was designed to recapitulate multiple critical features of the human lung. PuLMo incorporates the biophysical features of (1) air-liquid interface; (2) fractal airway network; (3) balloon shaped alveolar chambers; (4) cyclic stretching of the alveolar membrane; and (5) physiological breathing. PuLMo’s biological features included (1) ciliated cells; (2) mucus production; and (3) surfactant production. The platforms were fabricated using hybrid (subtractive + additive) manufacturing, allowing the integration of a wide range of materials. The stretchable alveolar membranes were fabricated using polyurethane. Breathing was carried out by stretching the alveoli membrane with a novel microfluidic aspiration principle. While the complexity of the integrated platform can be defined by the user, complete operation of PuLMo can require the perfusion and transition of multiple media. Therefore miniaturized pumps, valves, fluid circuit boards, and reservoirs were also developed to enable integrated operations. This presentation will give an overview of all the novel technologies that led to the R&D 100 award.
|
|