Luncheon Presentation: A Vascularized Endocrine Pancreas Microphysiological System
Timothy Kassis, Researcher, DARPA-PhysioMimetics Program, Massachusetts Institute of Technology (MIT)
Diabetes has reached epidemic proportions and is on a steep rise globally. A hallmark of diabetes is characterized by dysfunctional pancreatic islets. These pancreatic islets are a spherical aggregate of around 20 different cell types with the beta cells being the main type of cell implicated in the disease. Islets are highly vascularized and it has been shown that both the blood flow through this vasculature as well as endothelial cell-signaling are critical components in regulating beta cells and how they produce insulin in response to glucose. The authors developed a vascularized pancreas microphysiological system (MPS) that can potentially be used to study human islet physiology and pathophysiology within a relevant 3D physiological microenvironment, with the ability to connect the MPS to a 7-organ interaction platform to build a ‘human-on-a-chip’ for diabetes research. The authors believe that their platform will provide researchers with an invaluable tool to study pancreatic islets in both health and disease.
|
|