Mixed-Scale Fluidic System: Searching for Drug-induced DNA Damage in Circulating Tumor Cells
Steve Soper, Foundation Distinguished Professor; Director, Center of BioModular Multi-scale System for Precision Medicine, Adjunct Professor, Ulsan National Institute of Science & Technology, The University of Kansas
Improved therapies that yield more cures and better overall survival for
cancer patients are needed. For example, women with breast cancer have a
5-year survival rate of 22% (Stage IV) and 72% (Stage III).
Doxorubicin, cisplatin, paclitaxel, and tamoxifen are examples of drugs
used for treating breast cancer with selection of therapy typically
based on the classification and staging of the patient’s cancer. While
treatment regimens assigned to some patients may be optimal using the
current classification model, others within certain breast cancer
sub-types fail therapy. New assays must be developed to determine how a
patient’s physiology and genetic makeup affects drug efficacy. In this
presentation, a series of chips are used for the isolation and
processing of circulating tumor cells (CTCs). The chips quantify
response to therapy using three pieces of information secured from the
CTCs; (1) CTC number; (2) CTC viability; and (3) the frequency of DNA
damage (abasic (AP) sites) in genomic DNA (gDNA) harvested from the
CTCs. Microscale chips are used for CTC selection, CTC enumeration and
viability determinations. The chip to read AP sites is a nanosensor chip
made via nano-imprinting in plastics and contains a nanochannel with
dimensions less than the persistence length of double-stranded DNA (~50
nm). Labeling AP sites with fluorescent dyes and stretching the gDNA in
the nanochannel to near its full contour length allows for the direct
readout of the AP sites, even from a single CTC. This information is
used to determine how a patient is responding to therapy.
|
|