Striated Muscle Disease Modeling on a Chip
Megan L. McCain, Assistant Professor of Biomedical Engineering and Stem Cell Biology and Regenerative Medicine, University of Southern California
Cardiac and skeletal muscle research has traditionally been limited to model systems that lack throughput and/or relevance to native human tissues, such as animal models or simplified cell cultures with minimal functional outputs. The reliance on these platforms has limited our ability to establish human disease mechanisms, identify effective therapeutic targets, and efficiently screen drugs for functional efficacy. In this talk, I will describe our efforts in integrating tunable biomaterials, microfabrication techniques, and human cells (including stem cell derivatives) to engineer scalable models of human cardiac and skeletal muscle tissues with quantitative functional outputs. I will also describe how we are leveraging these platforms to model acquired and inherited forms of striated muscle diseases.
|
|