Scaling 3D Assays From Discovery to Complex Mechanistic Multi-Tissue Experiments Using a Modular Microfluidic Platform
Jan Lichtenberg, Chief Executive Officer, InSphero AG
Multi-tissue devices, in which different biomimetic organ models can interact with each other, have the potential to prepone systemic biological investigations of compound action to the in vitro phase. Early systemic insight will have substantial impact on compound selection and the reduction of animal studies. Combining physiologically relevant organ models in perfusion systems bears technological challenges and often leads to complicated culturing setups. Complex systems limit assay robustness, reduce reproducibility and make integration into scalable, automated routine processes difficult. We present a new multi-tissue platform featuring microfluidic channels and chambers that were specifically engineered for culturing of microtissues and organoids under physiological flow conditions. The platform complies with the SBS plate standard and is made polystyrene to prevent unwanted compound absorption. Its concept allows for automated and on-demand interconnection of up to 10 microtissues per channel in a very flexible way. Multiple devices can be operated in parallel, which increases the number of conditions and statistical replicates that can be executed in parallel. With the broad range of available spheroid-based organ-models, a variety of pre-clinical testing applications can be served using the very same platform.
|
|