Utilizing Multi-Organ Human on a Chip Systems to Predict in vivo Outcomes For Efficacy and Toxicity
James Hickman, Professor, University of Central Florida
The utilization of multi-organ human-on-a-chip or body-on-a-chip systems for toxicology and efficacy, that ultimately should lead to personalized medicine applications, is a topic that has received much attention recently for drug discovery and subsequent regulatory approval. Hesperos has been constructing these systems with up to 6 organs and have demonstrated long-term (>28 days) evaluation of drugs and compounds, that have shown similar response to results seen from clinical data or reports in the literature. Application of these systems for ALS, Alzheimer’s, rare diseases, diabetes and cardiac and skeletal muscle mechanistic toxicity will be reviewed. The development of an in vitro PDPK modeling that predicts in vivo results will also be presented. The system utilizes a pumpless platform with a serum free recirculating medium. This methodology integrates microsystems fabrication technology and surface modifications with protein and cellular components, for initiating and maintaining self-assembly and growth into biologically, mechanically and electronically interactive functional multi-component systems. Hesperos has received Phase II and Phase IIB SBIR grants from NCATS to apply Advanced Manufacturing Technologies and automation to these systems in collaboration with NIST in addition to support form pharmaceutical and cosmetic companies. This talk will also give results of six workshops held at NIH to explore what is needed for validation and qualification of these new systems.
|
|