Nanostructures-Embedded Microchips for Liquid Biopsy in Cancer
Hsian-Rong Tseng, Professor, University Of California-Los Angeles
The current gold standard for cancer diagnosis is the characterization of tumor tissues acquired via invasive procedures, e.g., surgical excision or needle biopsy. As an alternative to solid tumor biopsy, many have proposed the use of a “liquid biopsy” based on blood components like circulating tumor cells (CTCs) and extracellular vesicles (EVs). By detecting, enriching, and analyzing CTCs and EVs, we will be able to noninvasively and dynamically monitor disease progression in individual cancer patients and obtain insightful information for assessing disease status. Over the past decade, our research team at UCLA pioneered a unique concept of “NanoVelcro” CTC Chips and “NanoVilli” EV Chips, in which CTC and EV capture agent-coated nanostructured substrates were utilized to immobilize CTCs and EVs with remarkable efficiency, respectively. Multiple generations of NanoVelcro CTC and NanoVilli EV Chips have been developed over the past decade for a variety of clinical utilities, e.g., noninvasive molecular analysis for monitoring disease progression and treatment intervention. In this presentation, I will summarize the development of the new generations of “NanoVelcro” CTC and “NanoVilli” EV Chips, and the clinical applications of these new in vitro molecular diagnostic (IVMD) devices for cancer.
|
|