Harnessing Evaporation-Driven Capillary Flow For Point-of-Care Diagnostics
Andres Martinez, Associate Professor, California Polytechnic State University, San Luis Obispo
Paper-based microfluidic devices, also known as microPADs, offer a promising platform for the development of point-of-care assays for use in remote, resource-limited settings. Like conventional microfluidic devices, microPADs can be used to manipulate and analyze small volumes of fluids. Paper-based devices are also inexpensive to fabricate, portable, simple to operate, and can complete an assay without relying on electrical power or supporting equipment. MicroPADs typically wick fluids by capillary action, which provides a convenient mode of moving fluids through the device. This presentation will describe evaporation-driven capillary flow as a complementary approach for moving fluids through paper-based devices and the application of this approach toward automating multi-step assays that require a timed sequence of events.
|
|