Cap-to-Dispense (µCD): A Universal Microfluidic-Robotic Interface For Automated Pipette-Free High-Precision Liquid Handling
Tingrui Pan, Associate Professor, University Of California Davis
Microfluidic devices have been increasingly used for low-volume liquid handling operations. However, laboratory automation of such delicate devices has lagged behind due to the lack of world-to-chip (macro-to-micro) interfaces. In this paper, we have presented the first pipette-free robotic-microfluidic interface using a microfluidic-embedded container cap, referred to as a Microfluidic Cap-to-Dispense (µCD), to achieve a seamless integration of liquid handling and robotic automation without any traditional pipetting steps. The µCD liquid handling platform offers a generic and modular way to connect the robotic device to standard liquid containers. It utilizes the high accuracy and high flexibility of the robotic system to recognize, capture and position; and then using microfluidic adaptive printing it can achieve high-precision on-demand volume distribution. With its modular connectivity, nanoliter processability, high adaptability, and multitask capacity, µCD shows great potential as a generic robotic-microfluidic interface for complete pipette-free liquid handling automation.
|
|