3D Bioelectronics Tissue: A New Paradigm via Bioprinting
Wai Yee Yeong, Associate Professor at the School of Mechanical and Aerospace Engineering, Nanyang Technological University
Electricity is important in the physiology and development of most human tissues. Neural, muscular, and cardiac cells communicate among themselves via electrical signals. Electrical stimulation can activate many intracellular signaling pathways, and influence intracellular microenvironment, as a result, affect cell migration, cell proliferation, and cell differentiation. Conventional tissue-electronics interfaces has been demonstrated generally via mechanical coupling approaches such as using external electrode across 2D cell surface to create an electrical field, inserting an array of standalone microelectrode network through a target tissue, or seeding cells on 3D scaffolds made with conductive materials. Bioprinting has the potential of creating a new paradigm in the development of freeform 3D bioelectronics tissue. Bioprinting technologies provide the freedom to assemble different type of materials, living and functional nanomaterials, on-demand within a single multi-materials system. In this talk, we will discuss about bioprinting of cells and functional materials, paving the way to achieve a tissue-electronics interface system through 3D printing.
|
|