Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Bioprinting and Bioink Innovations for 3D-Tissues 2022

Abstract



(Supra)Molecular Design Enables Advanced Bioinks and Extracellular Matrix Mimietics

Matthew Baker, Assistant Professor, Maastricht University

While natural systems have evolved elegant self-assembled materials, the recreation of such materials in a synthetic system remains a challenge. Even more challenging is leveraging these delicate and hierarchically assembled structures for advanced biomedical engineering technologies. Supramolecular materials utilized for tissue engineering often suffer from poor mechanical properties and poor fabrication performance. In order to address these challenges, we set out to create supramolecular hydrogels from benzene-1,3,5-tricarboxamides which could be amenable to cell-culture and 3D fabrication technologies. Due to the dynamic nature of these supramolecular hydrogels, we paid careful attention to strategies to tune the dynamics and viscoelastic parameters of the system, enabling hydrogels with 1D nanofiber features and controllable internal dynamics. By carefully controlling the timescales of the material, we could access ranges that allowed control over cell aggregate formation and 3D printing. Ultimately, due to their self-healing and injectable nature, these materials were amenable to 3D bioprinting, and could be utilized to create complex architectures like a human sized meniscus. Via careful supramolecular design, the cooperative effects of supramolecular hierarchical structure and control over dynamic timescales can lead to highly processable and biomimetic architectures interesting for tissue engineering.


Add to Calendar ▼2022-11-07 00:00:002022-11-08 00:00:00Europe/LondonBioprinting and Bioink Innovations for 3D-Tissues 2022Bioprinting and Bioink Innovations for 3D-Tissues 2022 in Boston, USABoston, USASELECTBIOenquiries@selectbiosciences.com