Process Intensification for the Electrification of Chemical Manufacturing
Simon Kuhn, Professor, Department of Chemical Engineering, KU Leuven
Small scale flow reactors have great advantages over conventional reactors, such as well-controlled flow patterns and increased surface-to-volume ratios, resulting in enhanced heat and mass transfer rates. Coupled with other benefits such as inherent safety allowing to perform reactions at elevated temperatures, pressures, or using highly reactive intermediates, they have become an attractive choice for the continuous manufacturing of chemicals and pharmaceuticals. However, these applications are still hindered by two important obstacles namely, weak convective mixing and issues regarding solids handling. Integrating ultrasound with small scale flow reactors has proven to be one of the more promising methods to address these issues. With selected examples, we will showcase the synergistic effect of ultrasound for particle synthesis, as well as electro- and photochemical processes. Exploiting these synergistic effects results in novel reactor concepts which will support the shift in chemical manufacture towards green and sustainable processes based on renewable energy sources.
|
|