Accelerating Life Science Research: From Lab-on-a-Chip to Lab-on-a-Particle
Dino Di Carlo, Armond and Elena Hairapetian Chair in Engineering and Medicine, Professor and Vice Chair of Bioengineering, University of California Los Angeles
Building on the successes of Lab on a Chip technologies, a new frontier is emerging in the form of Lab on a Particle (LoP) platforms. These innovative technologies complement traditional microfluidic systems by utilizing microparticles to confine samples and facilitate microscale reactions. Unlike the static nature of microfluidic chips, LoP platforms offer dynamic and flexible solutions where microparticles act as discrete, suspendable compartments capable of performing highly parallelized assays. This advancement significantly enhances the ability to analyze molecules and cells with higher throughput, while incorporating sophisticated assays. The microparticles used in LoP assays are meticulously engineered with unique shapes and chemistries, providing functionalities that were previously unattainable with conventional microfluidic chips. These particles can template droplets, capture specific molecules, cells, and secretions, or even barcode reactions for multiplexed analysis. The integration of essential assay materials and structures directly into each particle eliminates the dependency on custom chips or specialized instrumentation. As a result, LoP platforms are compatible with standard laboratory instruments such as flow cytometers, fluorescence activated cell sorters (FACS), microscopes, and other imaging devices. This compatibility positions LoP technologies akin to software applications, or apps, operating on commonly available life science instrument hardware. This analogy highlights the transformative potential of LoP platforms in democratizing access to advanced assay capabilities. By circumventing the need for specialized equipment, these microparticle-based systems can accelerate adoption and broaden the impact of microfluidic innovations across diverse research fields. In this keynote presentation, we will explore some recent Lab on a Chip innovations developed in our lab, including Ferrobotics, and introduce recent Lab on a Particle platforms and applications. We will discuss demonstrated applications, such as in antibody discovery, elucidating links between cell secretions and gene expression, and identifying therapeutically optimal cells, ultimately highlighting the future prospects of LoP technologies in accelerating all life sciences.
|