07:30 | Morning Coffee, Continental Breakfast and Networking in the Exhibit Hall |
| Session Title: Emerging Themes and Trends in Lab-on-a-Chip and Microfluidics 2024 |
| |
| Venue: Ballroom A |
| |
09:00 | | Conference Chair Accelerating Life Science Research: From Lab-on-a-Chip to Lab-on-a-Particle Dino Di Carlo, Armond and Elena Hairapetian Chair in Engineering and Medicine, Professor and Vice Chair of Bioengineering, University of California-Los Angeles, United States of America
Building on the successes of Lab on a Chip technologies, a new frontier is emerging in the form of Lab on a Particle (LoP) platforms. These innovative technologies complement traditional microfluidic systems by utilizing microparticles to confine samples and facilitate microscale reactions. Unlike the static nature of microfluidic chips, LoP platforms offer dynamic and flexible solutions where microparticles act as discrete, suspendable compartments capable of performing highly parallelized assays. This advancement significantly enhances the ability to analyze molecules and cells with higher throughput, while incorporating sophisticated assays. The microparticles used in LoP assays are meticulously engineered with unique shapes and chemistries, providing functionalities that were previously unattainable with conventional microfluidic chips. These particles can template droplets, capture specific molecules, cells, and secretions, or even barcode reactions for multiplexed analysis. The integration of essential assay materials and structures directly into each particle eliminates the dependency on custom chips or specialized instrumentation. As a result, LoP platforms are compatible with standard laboratory instruments such as flow cytometers, fluorescence activated cell sorters (FACS), microscopes, and other imaging devices. This compatibility positions LoP technologies akin to software applications, or apps, operating on commonly available life science instrument hardware. This analogy highlights the transformative potential of LoP platforms in democratizing access to advanced assay capabilities. By circumventing the need for specialized equipment, these microparticle-based systems can accelerate adoption and broaden the impact of microfluidic innovations across diverse research fields. In this keynote presentation, we will explore some recent Lab on a Chip innovations developed in our lab, including Ferrobotics, and introduce recent Lab on a Particle platforms and applications. We will discuss demonstrated applications, such as in antibody discovery, elucidating links between cell secretions and gene expression, and identifying therapeutically optimal cells, ultimately highlighting the future prospects of LoP technologies in accelerating all life sciences. |
|
09:30 | | Keynote Presentation High-Throughput Mapping of Functional Proteins and Pathways Adam Abate, Professor of Bioengineering and Therapeutic Sciences, University of California-San Francisco, United States of America
Despite advances in AI for predicting protein structures from sequences, predicting function remains challenging due to the dynamic nature of protein mechanics. High-throughput experimentation is a powerful method to study proteins, allowing the generation of empirically-based functional maps. However, this process requires analyzing hundreds of thousands of variants to thoroughly scan the mutational landscape for even a single protein. This talk will discuss methods for high-throughput characterization of functional proteins and pathways, including enzymes, membrane transporters, and antibodies. High-throughput sequence-function mapping will enable the generation of empirical datasets necessary for building accurate computational models of proteins and pathways and, ultimately, enabling the in silico design of proteins with new functions. |
|
10:00 | | Keynote Presentation Title to be Confirmed. Steve Soper, Foundation Distinguished Professor, Director, Center of BioModular Multi-Scale System for Precision Medicine, The University of Kansas, United States of America
|
|
10:30 | Mid-Morning Coffee Break and Networking in the Exhibit Hall -- Meet Exhibitors and View Posters |
11:00 | View Second Hall of Morning Session in the Organoids Track Agenda |
12:30 | Networking Buffet Luncheon -- Network with Exhibitors and Colleagues, View Posters |
13:20 | View Organoids and Organs-on-Chips Session from 13:30-15:00 in the Organoids Track Agenda |
15:00 | Mid-Afternoon Coffee Break and Networking in the Exhibit Hall |
| Session Title: 3D-Printing of Microfluidics |
| |
| Venue: Ballroom A |
| |
15:30 | | Keynote Presentation Pushing Boundaries: High Resolution 3D Printing for Microfluidics Gregory Nordin, Professor, Brigham Young University, United States of America
Interest in 3D printing for microfluidic device fabrication is high, but routinely achieving sub-100 µm features remains a challenge. This is because microfluidic devices primarily consist of negative space features, which require different considerations compared to positive space features common in other 3D printing applications. To address this, we have developed our own stereolithographic 3D printers and materials tailored to these requirements to explore what is possible with 3D printing for high resolution microfluidics. Our approach can create channels as small as 2 µm x 2 µm. We have also developed active elements, such as valves and pumps, with the smallest valves having an active area of just 15 µm x 15 µm. With these capabilities, we have demonstrated highly integrated 3D printed microfluidic components, such as a 10-stage 2-fold serial dilutor within a 2.2 mm x 1.1 mm footprint. Additionally, we have created a fast (~1 ms) and compact (<1 mm^3) 3D printed mixer using a new multi-resolution 3D printing method. These advancements position 3D printing as an attractive alternative to costly cleanroom fabrication processes. They offer the added benefit of fast (~5-15 minute), parallel fabrication of multiple devices in a single print run due to their small size, facilitating a path to mass manufacturing. |
|
16:00 | A Platform For Commercialization of 3D Printed Microfluidics Embedded into Standard Well Plates Jeff Schultz, Co-Founder, Phase, Inc.
Phase is developing an additive manufacturing process, termed 3D PDMS, to 3D print microfluidic devices using conventional thermally curable PDMS. To enable academic and industrial adoption of these advanced microfluidic devices, Phase is developing their VivorrayTM plate systems, which are sterilizable 96- and 384-well plates made from a USP Class VI certified material, that integrates 3D PDMS MF devices into well plates with industry standard geometries for automated high-throughput workflows. The resulting system will be a single fully automated microfluidic manufacturing platform with the design freedom of 3D printing capable of manufacturing complex PDMS microfluidic devices. |
16:30 | Addressing Key Challenges in Multi-Material and Multi-scale Digital Projection Stereolithography Pranav Soman, Professor, Biomedical and Chemical Engineering; IPA Program Director, Advanced Manufacturing (AM), National Science Foundation (NSF), Syracuse University, United States of America
This presentation will include two research projects conducted at Syracuse University and few outreach slides related to opportunities at NSF for the Additive Manufacturing community. First project, entitled, Multi-material Gradient Printing Using Meniscus-enabled Projection Stereolithography (MAPS) addresses current challenges related to vat based multi-material printing associated with hardware modifications, control systems, cross-contamination, waste, and resin properties. MAPS is a vat-free method that relies on generating and maintaining a resin meniscus between a cross-linked structure and bottom window to print lateral, vertical, discrete, or gradient multi-material 3D structures with no waste and user-defined mixing between layers. We show that MAPS can print 3D structures with gradient properties in mechanical stiffness, opacity, surface energy, cell densities, and magnetic properties. Second project, entitled Multipath projection stereolithography (MPS) addresses the inherent tradeoffs between print resolution, design complexity, and built sizes. Inspired by microscopes that could switch objectives to achieve multi-scale imaging, we report a new optical printer coined as MPS specifically designed for printing microfluidic devices. MPS is designed to switch between high- and low-resolution optical paths to generate centimeter sized constructs (3cm x 6cm) with a feature resolution of ~10µm. Using a test-case of micromixers, we show user-defined CAD models can be directly input to an automated slicing software to define printing of low-resolution features with embedded micro-scale fins. A new computational model, validated using experimental results, was used to simulate various fin designs and experiments were conducted to verify simulated mixing efficiencies. |
17:00 | ASIGA Advancing 3D Printed Microfluidics Bryce Hiller, Digital Education Coordinator, ASIGA
ASIGA is a leader in reliable and precise DLP 3D Printers. In this talk we will show you how to leverage our open material system and voxel-level control over all parameters in our 3D printers to create cutting edge Microfluidic Chips. |
17:30 | Microfluidics and Mask-Aligner: How to Make the Right Choice? Nicolas Brillouet, CTO, Kloé
Mask-aligners have been used for decades as key technological equipments to manufacture microchips, in particular in semiconductor industry. More recently, these equipments, historically based on the use of mercury lamps as the UV-source, have also been considered as relevant systems to enable the fabrication of chips in microfluidics (molds / PDMS casting, Lab On a Chip, Organ on A Chip…) in particular thanks to the cost effective use of plastic/flexible photomasks (before considering the use of chrome photomasks to achieve higher resolution). However, the use of mercury lamps, that was already very energy consuming, is also now worldwidely compromised in a very near future by considering the global ban of using mercury in fluorescent lighting (Minamata Convention on Mercury) that entered into force in 2017, and that has been ratified by 140 countries, while the last use exemptions remain presently in effect later by 2027. Without waiting for this recent decision dedicated to protect human health and the environment from the adverse effects of mercury, our company KLOE SAS introduced UV-KUB3 on the market since 2015 as the very first range of UV-LED based mask-aligners and this presentation highlights the major advantages of using this range of innovative lithography equipments as the new generation of mask-aligners. |
18:00 | Exploiting Non-Animal Models to Optimize Lipid Nanoparticle/mRNA Complexes as Heart Therapeutics Kevin Healy, Jan Fandrianto and Selfia Halim Distinguished Professorship in Engineering, University of California, Berkeley, United States of America
Although cardiovascular disease is the leading cause of death worldwide, innovation in heart failure therapeutics has been sparse. A primary reason behind the lack of therapeutic development is the inability to use phenotypic tissue-level approaches to discover novel therapies, such as complex in vitro models like microphysiological systems (MPS). In recent years, therapeutics that increase the expression of specific genes have been explored, but they have limited clinical translatability due to the lack of a safe and effective delivery system. A notable obstacle is that dense cardiac tissues suffer from low transfection efficiency of non-proliferative cardiomyocytes, diffusional barriers posed by the extracellular matrix of 3D cardiac muscle, and potential immunogenicity and carcinogenicity associated with viral vectors. Recent progress in the development of non-viral vectors like lipid nanoparticles (LNPs) holds great promise in overcoming these limitations and can make a breakthrough in cardiovascular medicine due to the transient nature of mRNA transfection. A key challenge preventing the development of LNPs that can transfect heart tissue is the absence of in vitro screening platforms that predict in vivo efficacy. In this talk, I will demonstrate that a phenotypic tissue-level cardiac MPS containing a heart micromuscle constructed from human induced pluripotent stem cell cardiomyocytes (hiPSC-CM) with a Cre-reporter, can identify LNP/mRNA complexes that diffuse within 3D cardiac micromuscle, transfect cardiomyocytes, and predict LNP transfection in the heart in vivo. Specifically, formulations contained a novel acid-degradable PEG (ADP)-lipid that had enhanced diffusion and gene editing efficiency in the cardiac MPS. In vivo delivery of LNP/mRNA complexes containing luciferase and CRE mRNA into Ai6 mice validated the MPS screening results and demonstrated that ADP-LNPs exhibited significantly higher transfection in the heart, with lower off-target levels of liver uptake compared to a standard LNP formulation. To our knowledge, this is the first study incorporating an organ-on-a-chip microfluidic culture device as a platform for screening novel LNP formulations and successfully identifying one suitable for delivery of mRNA to the heart. Our work will contribute to the progress of new cardiac therapies, and will stimulate the generation of more advanced non-animal models as preclinical platforms in the drug discovery landscape.
|
18:30 | Networking Reception in the Exhibit Hall with Beer, Wine and Dinner. Network with Colleagues, Engage with the Exhibitors and View Posters |
20:15 | Close of Day 2 Main Conference Programming |
20:30 | Introduction to Microfluidics Training Course Shuichi Takayama, Professor, Georgia Research Alliance Eminent Scholar, and Price Gilbert, Jr. Chair in Regenerative Engineering and Medicine Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, United States of America
Training Course from 20:30 - 22:30
Venue: Slate Room Room
[Separate Registration Required to Attend this Training Course]
|