Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip, Microfluidics & Microarray World Congress

Steve Soper's Biography



Steve Soper, Foundation Distinguished Professor, Director, Center of BioModular Multi-scale System for Precision Medicine, The University of Kansas, Adjunct Professor, Ulsan National Institute of Science & Technology

Prof. Soper (since 2016) is a Foundation Distinguished Professor in Chemistry and Mechanical Engineering at the University of Kansas. At KUMC, Prof. Soper holds an adjunct appointment in the Cancer Biology Department and is a member of the KU Cancer Center. He also holds an appointment at Ulsan National Institute of Science and Technology in Ulsan, South Korea, where he is a World Class University Professor.

As a result of his efforts, Prof. Soper has secured extramural funding totaling >$105M, has published over 245 peer-reviewed manuscripts (h index = 67; 16,188 citations); 31 book chapters and 71 peer-reviewed conference proceeding papers, and is the author of 12 patents. He is also the founder of a startup company, BioFluidica, which is marketing devices for the isolation and enumeration of circulating tumor cells. Soper recently founded a second company, Sunflower Genomics, which is seeking to market a new DNA/RNA single-molecule sequencing platform. His list of awards includes Chemical Instrumentation by the American Chemical Society, the Benedetti-Pichler Award for Microchemistry, Fellow of the AAAS, Fellow of Applied Spectroscopy, Fellow of the Royal Society of Chemistry, R&D 100 Award, Distinguished Masters Award at LSU and Outstanding Scientist/Engineer in the state of Louisiana in 2001. Finally, Prof. Soper has granted 48 PhDs and 7 MS degrees to students under his mentorship. He currently heads a group of 15 researchers.

His major discoveries include: (1) Technology for the detection of circulating tumor cells that can manage a variety of cancer diseases using a simple blood test (test has been demonstrated in multiple myeloma, pediatric acute lymphoblastic leukemia, acute myeloid leukemia, pancreatic, breast, colorectal, prostate, and ovarian cancers); (2) new hardware and assay for the point-of-care diagnosis of acute ischemic stroke; (3) single-molecule DNA and RNA sequencing nanotechnology; and (4) currently working on a home-test for COVID-19 infections (handheld instrument and the associated assay).

Steve Soper Image

Fabrication and Applications of Thermoplastic Nanochannels: Transport Behavior of Deoxynucleotide Monophosphates for Single-Molecule DNA Sequencing

Friday, 19 September 2014 at 09:30

Add to Calendar ▼2014-09-18 00:00:002014-09-18 01:00:00Europe/LondonTitle to be Confirmed.Lab-on-a-Chip, Microfluidics and Microarray World Congress in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com

The major focus of this presentation will be to discuss new technologies, methodologies and fundamental knowledge in the area of single-molecule DNA sequencing using nanometer channels fabricated in thermoplastics. Nanochannels with dimensions <200 nm (width and depth) and lengths >50 µm are fabricated in polymer substrates using nanoimprint lithography (NIL) and resin stamps. The procedure basically involves using optical lithography and focused ion beam milling to make masters in silicon that consist of micro- and nanostructures. These masters are subsequently used to make resin stamps via UV-NIL. The resin stamps can then be used to make the required nanochannels in a variety of polymeric material, such as cyclic olefin copolymer, COC, and poly(methylmethacrylate), PMMA. Channels with dimensions to 15 nm (width x depth) and lengths to 100 µm have already been fabricated using this procedure. We will discuss the electrophoretic transport properties of deoxynucleotides monophosphates (dNMPs) through these channels that generate molecular-dependent flight times that can be used for their identification. The sequencing platform employs an exonuclease enzyme to produce the dNMPs from intact dsDNA molecules. Using fluorescence microscopy, we will show the single-molecule transport dynamics of dNMPs in a variety of nanochannel columns and compare results to the transport in microchannels. The electrophoretic migration behavior of the dNMPs using microchip electrophoresis was not possible unless cationic surfactants were added to the carrier electrolyte. However, due to transverse electromigation effects (TEM), different migration patterns of the dNMPs were observed in nanochannels. We will also discuss a host of surface modifications that can be invoked on the nanochannels to affect the surface charge density, topology and chemistry and the consequences of these modifications on the transport dynamics of dNMPs as well as the electroosmotic flow (EOF).


Add to Calendar ▼2014-09-18 00:00:002014-09-19 00:00:00Europe/LondonLab-on-a-Chip, Microfluidics and Microarray World CongressLab-on-a-Chip, Microfluidics and Microarray World Congress in San Diego, California, USASan Diego, California, USASELECTBIOenquiries@selectbiosciences.com