Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics: Companies, Technologies and Commercialization

Steve Soper's Biography



Steve Soper, Foundation Distinguished Professor, Director, Center of BioModular Multi-Scale System for Precision Medicine, The University of Kansas

Prof. Soper is currently a Foundation Distinguished Professor in Chemistry and Mechanical Engineering at the University of Kansas, Lawrence. Prof. Soper also holds an appointment at Ulsan National Institute of Science and Technology in Ulsan, South Korea, where he is a World Class University Professor. He is also serving as a Science Advisor for a number of major worldwide companies. Prof. Soper is currently on the Editorial Board for Scientific Reports and Journal of Micro- and Nanosystems.

As a result of his efforts, Prof. Soper has secured extramural funding totaling >$103M and has published over 265 peer-reviewed manuscripts (h index = 71) and is the author of 20 patents. He is also the founder of a startup company, BioFluidica, which is marketing devices for the isolation and enumeration of circulating tumor cells. His list of awards includes Chemical Instrumentation by the American Chemical Society, the Benedetti-Pichler Award for Microchemistry, Fellow of the AAAS, Fellow of Applied Spectroscopy, Fellow of the Royal Society of Chemistry, R&D 100 Award, Distinguished Masters Award at LSU and Outstanding Scientist/Engineer in the state of Louisiana in 2001. Finally, Prof. Soper has granted 60 PhDs and 6 MS degrees to students under his mentorship. He currently heads a group of 20 researchers.

Steve Soper Image

Polymer-based Nanosensors using Flight-Time Identification of Mononucleotides for Single-Molecule Sequencing

Tuesday, 27 September 2016 at 16:55

Add to Calendar ▼2016-09-27 16:55:002016-09-27 17:55:00Europe/LondonPolymer-based Nanosensors using Flight-Time Identification of Mononucleotides for Single-Molecule SequencingSELECTBIOenquiries@selectbiosciences.com

We are generating a single-molecule DNA sequencing platform that can acquire sequencing information with high accuracy. The technology employs high density arrays of nanosensors that read the identity of individual mononucleotides from their characteristic flight-time through a 2-dimensional (2D) nanochannel (~20 nm in width and depth; >100 ┬Ám in length) fabricated in a thermoplastic via nano-imprinting (NIL). The mononucleotides are generated from an intact DNA fragment using a highly processive exonuclease, which is covalently anchored to a plastic solid support contained within a bioreactor that sequentially feeds mononucleotides into the 2D nanochannel. The identity of the mononucleotides is deduced from a molecular-dependent flight-time through the 2D nanochannel. The flight time is read in a label-less fashion by measuring current transients induced a single mononucleotide when it travels through a constriction with molecular dimensions (<10 nm in diameter) that are poised at the input/output ends of the flight tube. In this presentation, our efforts on building these polymer nanosensors using NIL in thermoplastics will be discussed and the detection of single molecules using electrical transduction with their identity deduced from the associated flight time provided. Finally, information on the manipulation of single DNA molecules using nanofluidic circuits will be discussed that takes advantage of forming unique nano-scale features to shape electric fields for DNA manipulation and serves as the functional basis of the nanosensing platform.


Add to Calendar ▼2016-09-26 00:00:002016-09-28 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics: Companies, Technologies and CommercializationSELECTBIOenquiries@selectbiosciences.com