Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Innovations in Microfluidics & SCA 2022

Steve Soper's Biography



Steve Soper, Foundation Distinguished Professor, Director, Center of BioModular Multi-scale System for Precision Medicine, The University of Kansas, Adjunct Professor, Ulsan National Institute of Science & Technology

Prof. Soper (since 2016) is a Foundation Distinguished Professor in Chemistry and Mechanical Engineering at the University of Kansas. At KUMC, Prof. Soper holds an adjunct appointment in the Cancer Biology Department and is a member of the KU Cancer Center. He also holds an appointment at Ulsan National Institute of Science and Technology in Ulsan, South Korea, where he is a World Class University Professor.

As a result of his efforts, Prof. Soper has secured extramural funding totaling >$125M, has published over 245 peer-reviewed manuscripts (h index = 70; >17,000 citations); 31 book chapters and 71 peer-reviewed conference proceeding papers, and is the author of 12 patents. He is also the founder of a startup company, BioFluidica, which is marketing devices for the isolation and enumeration of liquid biopsy markers. Soper recently founded a second company, Sunflower Genomics, which is seeking to market a new DNA/RNA single-molecule sequencing platform. His list of awards includes Ralph Adams Award in Bioanalytical Chemistry, Chemical Instrumentation by the American Chemical Society, the Benedetti-Pichler Award for Microchemistry, Fellow of the AAAS, Fellow of Applied Spectroscopy, Fellow of the Royal Society of Chemistry, R&D 100 Award, Distinguished Masters Award at LSU and Outstanding Scientist/Engineer in the state of Louisiana in 2001. Finally, Prof. Soper has granted 50 PhDs and 7 MS degrees to students under his mentorship. He currently heads a group of 15 researchers.

His major discoveries include: (1) Technology for the detection of liquid biopsy markers that can manage a variety of diseases using a simple blood test (test has been demonstrated in multiple myeloma, pediatric acute lymphoblastic leukemia, acute myeloid leukemia, pancreatic, breast, colorectal, prostate, and ovarian cancers); (2) new hardware and assay for the point-of-care diagnosis of acute ischemic stroke; (3) single-molecule DNA and RNA sequencing nanotechnology; and (4) currently working on a home-test for COVID-19 infections (handheld instrument and the associated assay.

Steve Soper Image

Plastic-based Nanofluidic Devices for Single Molecule DNA/RNA Sequencing

Monday, 21 March 2022 at 09:30

Add to Calendar ▼2022-03-21 09:30:002022-03-21 10:30:00Europe/LondonPlastic-based Nanofluidic Devices for Single Molecule DNA/RNA SequencingInnovations in Microfluidics and SCA 2022 in Boston, USABoston, USASELECTBIOenquiries@selectbiosciences.com

We are generating a single-molecule, amplification-free DNA/RNA sequencing platform that can acquire sequencing information with high accuracy (>95%) at unprecedented throughputs (106 bases s-1). The technology employs high density arrays of nanochannels that read the identity of individual mononucleotides from their molecular-dependent electrophoretic mobilities through a 2-dimensional (2D) nanochannel (~50 nm in width and depth; >10 ┬Ám in length) fabricated in a thermoplastic via nanoimprint lithography (NIL) or injection compression molding. The single mononucleotides are generated from an intact DNA fragment using a highly processive exonuclease, which is covalently anchored to a plastic solid support contained within a bioreactor that sequentially feeds cleaved mononucleotides into the 2D nano-electrophoresis channel. The identity of each mononucleotide is deduced from its molecular-dependent electrophoretic mobility through the 2D nanochannel. The mobility is read in a label-free fashion by measuring current transients (i.e., resistive pulse sensing) induced by a single mononucleotide when it travels through a constriction with molecular dimensions (<10 nm in effective diameter) poised at the input/output ends of the electrophoresis channel.

In this presentation, our results in using nanoscale electrophoresis to deduce the identity of both the deoxynucleotides and ribonucleotides will be discussed, especially material and scaling effects on the performance of nano-electrophoresis. Also, different surface modification strategies of thermoplastics will be presented that alter the electroosmostic flow and its effects on separation performance. I will also discuss the surface immobilization of exonucleases onto solid-plastic supports using UV/O3 activation with EDC/NHS coupling chemistry. In particular, the effects of surface immobilization on enzyme kinetic rates, processivity, and stability will be discussed. Finally, the fabrication and operation of in-plane nanopore sensors to detect single molecules will be discussed.


Add to Calendar ▼2022-03-21 00:00:002022-03-22 00:00:00Europe/LondonInnovations in Microfluidics and SCA 2022Innovations in Microfluidics and SCA 2022 in Boston, USABoston, USASELECTBIOenquiries@selectbiosciences.com