Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Innovations in Microfluidics 2020

David Juncker's Biography

David Juncker, Professor and Chair, McGill University

David Juncker stayed as a visiting scientist at the National Metrology Institute of Japan in Tsukuba from 1997-98. He conducted his PhD research at the IBM Zurich Research Laboratory from 1999-2002. He then pursued his studies as a Post-doc first at IBM Zurich until 2004, and then one year at the Swiss Federal Institute of Technology in Zurich (ETH). David started as an assistant professor in the Biomedical Engineering Department of McGill University in 2005, was promoted to associate professor with tenure in 2011, and became a full professor in 2016. As of early 2018, David serves as departmental chair of the Biomedical Engineering Department at McGill University.

Dr. Juncker's current interests are in the miniaturization and integration in biology and medicine, which includes the engineering and utilization of novel micro and nanotechnologies for manipulating, stimulating and studying oligonucleotides, proteins, cells, and tissues. The emerging field of nanobiotechnology, in a broad sense, is the most exciting to him, and is also key to tackle some of the major challenges in biology and medicine, for example identifying novel biomarkers for early disease diagnosis and developing low-cost point-of-care diagnostics.

David Juncker Image

May the Capillary Force Be With You: Microfluidic Capillaric Circuits

Monday, 23 March 2020 at 17:15

Add to Calendar ▼2020-03-23 17:15:002020-03-23 18:15:00Europe/LondonMay the Capillary Force Be With You: Microfluidic Capillaric CircuitsInnovations in Microfluidics 2020 in Boston, USABoston,

Microfluidics and lab-on-a-chip carry the promise of rapid analysis, economy of reagents and use at the point-of-care analysis using minute amounts of reagents. Here, our efforts in making microchannel-based capillary microfluidics will be discussed, and the realization of advanced circuits – termed capillaric circuits in analogy to electronic circuits –that realize complex fluidic operation simply by a combination of the microscale geometry and control over surface chemistry. Basic elements including capillary pumps, trigger valves, retention flow valves, air valves and so on, will be introduced, and their use for sequential autonomous and pre-programmed delivery of 96 reagents as well as for timing illustrated. The application of capillaric circuits for a rapid diagnostic for urinary tract infection in 7 min, measles vaccination testing, and automation of the thrombogram to characterize haemostatic-thrombotic mechanism of the blood will be presented. The transition from microfabrication to rapid prototyping and 3D printing of capillaric circuits makes them easy-to-fabricate and readily accessible to a wide audience.

Add to Calendar ▼2020-03-23 00:00:002020-03-24 00:00:00Europe/LondonInnovations in Microfluidics 2020Innovations in Microfluidics 2020 in Boston, USABoston,