Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Organ-on-a-Chip World Congress & 3D-Culture 2017

Geraldine A Hamilton's Biography



Geraldine A Hamilton, President/Chief Scientific Officer, Emulate Inc

Dr. Hamilton's career spans academic research, large Pharma, and biotech start-ups, with over 10 years’ experience in the pharmaceutical industry. In all three arenas, Dr. Hamilton's work has focused on the development of new human-relevant cell-based models and their application to drug discovery. This pursuit brought Dr. Hamilton to Harvard's Wyss Institute, where as a Lead Senior Staff Scientist she directed the extensive Organs-on-Chips project. This project was successfully spun-out from the Wyss Institute to form Emulate, Inc., where Dr. Hamilton now serves as President and Chief Scientific Officer. At Emulate, Dr. Hamilton continues her work to further develop Organs-on-Chips technology as well as to drive and facilitate its adoption in commercial use. Prior to joining the Wyss Institute and Emulate, Dr. Hamilton was one of the founding scientists of the biotech start-up CellzDirect, where she was the VP of Scientific Operations and Director of Cell Products. CellzDirect successfully translated and commercialized technology from academic research to supply the pharmaceutical industry with hepatic cell products and services for safety assessment and drug-metabolism studies. Hamilton received her Ph.D. in cell biology/toxicology from the University of Hertfordshire (England) in conjunction with GlaxoSmithKline, followed by a post-doctoral research fellowship at the University of North Carolina. She has led in vitro toxicology and drug metabolism teams in GlaxoSmithKline and AstraZeneca. Her current research interests and scientific experience include: bioinspired engineering, toxicology and drug metabolism, liver cell biology, mechanisms regulating gene expression and differentiation, regulation of nuclear receptors and transcriptional activation in hepatocytes by xenobiotics, human cell isolation and cryopreservation techniques.

Geraldine A Hamilton Image

Human Emulation System: an Organs-on-Chips Platform for Advancing Drug Discovery and Development

Monday, 10 July 2017 at 11:30

Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com

Micro-engineered Organs-on-Chips show physiological functions consistent with normal living human or animal cells in vivo. Each Organ-Chip is composed of a clear flexible polymer about the size of a AA battery that contains hollow channels lined by living human cells. The cells are cultured under continuous flow and mechanical forces thereby recreating key factors known to influence cell function in vivo.  Cells cultured  under continuously perfused, engineered 3D microenvironments go beyond conventional 3D in vitro models by recapitulating in vivo intercellular interactions, spatiotemporal gradients, vascular perfusion, and mechanical microenvironments. Integrating cells within Organs-on-Chips, enables the study of normal physiology and pathophysiology in an organ-specific context.  Cellular/molecular level resolution is enhanced and demonstrates key insights into the mechanisms of action of drug induced toxicity.   Numerous recent advances in applications of these systems are relevant in drug discovery/development for compound selection, and in de-risking mechanistic concerns using various organ systems. In this presentation we will highlight studies from collaborative efforts across our Human Emulation System with various academic and industry partners to demonstrate the utility of the system as a more predictive human-relevant alternative for efficacy and safety testing of new chemical entities in humans.

Human Emulation System: an Organs-on-Chips Platform for Advancing Drug Discovery and Development

Monday, 10 July 2017 at 11:30

Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com

Micro-engineered Organs-on-Chips show physiological functions consistent with normal living human or animal cells in vivo. Each Organ-Chip is composed of a clear flexible polymer about the size of a AA battery that contains hollow channels lined by living human cells. The cells are cultured under continuous flow and mechanical forces thereby recreating key factors known to influence cell function in vivo.  Cells cultured  under continuously perfused, engineered 3D microenvironments go beyond conventional 3D in vitro models by recapitulating in vivo intercellular interactions, spatiotemporal gradients, vascular perfusion, and mechanical microenvironments. Integrating cells within Organs-on-Chips, enables the study of normal physiology and pathophysiology in an organ-specific context.  Cellular/molecular level resolution is enhanced and demonstrates key insights into the mechanisms of action of drug induced toxicity.   Numerous recent advances in applications of these systems are relevant in drug discovery/development for compound selection, and in de-risking mechanistic concerns using various organ systems. In this presentation we will highlight studies from collaborative efforts across our Human Emulation System with various academic and industry partners to demonstrate the utility of the system as a more predictive human-relevant alternative for efficacy and safety testing of new chemical entities in humans.


Add to Calendar ▼2017-07-10 00:00:002017-07-11 00:00:00Europe/LondonOrgan-on-a-Chip World Congress and 3D-Culture 2017Organ-on-a-Chip World Congress and 3D-Culture 2017 in Boston, USABoston, USASELECTBIOenquiries@selectbiosciences.com