Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences BioMEMS, Microfluidics & Biofabrication: Technologies and Applications

David L. Kaplan's Biography



David L. Kaplan, Stern Family Endowed Professor of Engineering, Professor & Chair -- Dept of Biomedical Engineering, Tufts University

David Kaplan holds an Endowed Chair, the Stern Family Professor of Engineering, at Tufts University. He is Professor & Chair of the Department of Biomedical Engineering and also holds faculty appointments in the School of Medicine, the School of Dental Medicine, Department of Chemistry and the Department of Chemical and Biological Engineering. His research focus is on biopolymer engineering to understand structure-function relationships, with emphasis on studies related to self-assembly, biomaterials engineering and functional tissue engineering/regenerative medicine. He has published over 600 peer reviewed papers and edited eight books. He directs the NIH P41 Tissue Engineering Resource Center (TERC) that involves Tufts University and Columbia University. He serves of the editorial boards of numerous journals and is Associate Editor for the ACS journal Biomacromolecules. He has received a number of awards for teaching, was Elected Fellow American Institute of Medical and Biological Engineering and received the Columbus Discovery Medal and Society for Biomaterials Clemson Award for contributions to the literature.

David L. Kaplan Image

Biomaterial Printing Frontiers

Thursday, 16 March 2017 at 12:00

Add to Calendar ▼2017-03-16 12:00:002017-03-16 13:00:00Europe/LondonBiomaterial Printing FrontiersSELECTBIOenquiries@selectbiosciences.com

Biomaterials offer opportunities for devices that operate seamlessly at the interface of the biological and technological worlds.  Stringent requirements on material form and function are imposed when operating at the nanoscale or when interfacing such materials with microelectronic circuitry. Silk fibroin is a very attractive biopolymer for use as a polymorphic matrix for multiple material formats that are casted, printed, extruded, or molded. This opens opportunities for multi-functional, sustainable devices that leverage both the properties of the material and the  biological features that they can encompass.


Add to Calendar ▼2017-03-16 00:00:002017-03-17 00:00:00Europe/LondonBioMEMS, Microfluidics and Biofabrication: Technologies and ApplicationsSELECTBIOenquiries@selectbiosciences.com