Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Circulating Biomarkers World Congress 2018

Tony Jun Huang's Biography



Tony Jun Huang, William Bevan Distinguished Professor of Mechanical Engineering and Materials Science, Duke University

Tony Jun Huang is the William Bevan Distinguished Professor of Mechanical Engineering and Materials Science at Duke University. Previously he was a professor and the Huck Distinguished Chair in Bioengineering Science and Mechanics at The Pennsylvania State University. He received his Ph.D. degree in Mechanical and Aerospace Engineering from the University of California, Los Angeles (UCLA) in 2005. His research interests are in the fields of acoustofluidics, optofluidics, and micro/nano systems for biomedical diagnostics and therapeutics. He has authored/co-authored over 260 peer-reviewed journal publications in these fields. His journal articles have been cited more than 32,000 times, as documented at Google Scholar (h-index: 95). He also has 26 issued or pending patents. Prof. Huang was elected a fellow (member) of National Academy of Inventers (USA) and the European Academy of Sciences and Arts. He was also a fellow of the following six professional societies: American Association for the Advancement of Science (AAAS), the American Institute for Medical and Biological Engineering (AIMBE), the American Society of Mechanical Engineers (ASME), the Institute of Electrical and Electronics Engineers (IEEE), the Institute of Physics (UK), and the Royal Society of Chemistry (UK). In addition, he has selected to receive many prestigious awards and honors including a 2010 National Institutes of Health (NIH) Director’s New Innovator Award, a 2012 Outstanding Young Manufacturing Engineer Award from the Society for Manufacturing Engineering, the 2014 IEEE Sensors Council Technical Achievement Award from the Institute of Electrical and Electronics Engineers (IEEE), the 2017 Analytical Chemistry Young Innovator Award from the American Chemical Society (ACS), the 2019 Van Mow Medal from the American Society of Mechanical Engineers (ASME), and the 2019 Technical Achievement Award from the IEEE Engineering in Medicine and Biology Society (EMBS). In the last two consecutive years (2022-2023), he has been named to a global list of the most highly cited researchers (cross field) by Clarivate (Web of Science).

Tony Jun Huang Image

Acoustic Tweezers: Separating Exosomes, Circulating Tumor Cells, and Other Tiny Objects Using Sound Waves

Thursday, 29 March 2018 at 15:00

Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com

The ability to isolate exosomes, circulating tumor cells (CTCs), and other circulating factors from biological fluids in a precise, biocompatible, and convenient manner is critical for many biomedical studies and applications. Here we summarize our recent progress on an “acoustic tweezers” technology that utilizes sound waves to manipulate exosomes, CTCs, and other tiny particles. For example, we developed an acoustic separation method to isolate exosomes directly from undiluted whole blood in a label-free and contact-free manner. This device consists of two modules. Micro-scale blood components are first removed by the cell-removal module, followed by extracellular vesicle subgroup separation in the exosome-isolation module. In the cell-removal module, we demonstrate the isolation of 110 nm particles from a mixture of micro- and nano-sized particles with a yield greater than 99%. In the exosome-isolation module, we isolate exosomes from an extracellular vesicle mixture with a purity of 98.4%. Integrating the two acoustofluidic modules onto a single chip, we isolated exosomes from whole blood with a blood cell removal rate of over 99.999%. The acoustic tweezers technology is capable of delivering high-precision, high-throughput, high-efficiency cell/particle/fluid manipulation in a simple, inexpensive, cell-phone-sized device. More importantly, the acoustic power intensity and frequency used in the acoustic tweezers technology are in a similar range as those used in ultrasonic imaging, which has proven to be extremely safe for health monitoring, even during various stages of pregnancy. As a result, the acoustic tweezers technology is extremely biocompatible; i.e., cells can maintain their natural states and highest integrity during the acoustic cell-manipulation process.


Add to Calendar ▼2018-03-28 00:00:002018-03-29 00:00:00Europe/LondonCirculating Biomarkers World Congress 2018Circulating Biomarkers World Congress 2018 in Boston, USABoston, USASELECTBIOenquiries@selectbiosciences.com