Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Organs-on-Chips and 3D-Cultures: Technologies and Approaches

James Hickman's Biography



James Hickman, Professor, Nanoscience Technology, Chemistry, Biomolecular Science and Electrical Engineering, University of Central Florida; Chief Scientist, Hesperos

James J. Hickman is a founder and current Chief Scientist of Hesperos, located in Orlando, Florida, which is focusing on cell-based systems for drug discovery and toxicity. He is also the Founding Director of the NanoScience Technology Center and a Professor of Nanoscience Technology, Chemistry, Biomolecular Science, Material Science and Electrical Engineering at the University of Central Florida. Previously, he held the position of the Hunter Endowed Chair in the Bioengineering Department at Clemson University. Dr. Hickman has a Ph.D. from the Massachusetts Institute of Technology in Chemistry. For the past twenty-five years, he has been studying the interaction of biological species with modified surfaces, first in industry and in the latter years in academia. While in industry he established one of the first bioelectronics labs in the country that focused on cell-based sensors and their integration with electronic devices and MEMS devices. He is interested in creating hybrid systems for biosensor and biological computation applications and the creation of functional in vitro systems for human body-on-a-chip applications. He has worked at NSF and DARPA in the area of biological computation. He is a Fellow of both the American Institute of Medical and Biomedical Engineers (AIMBE) (2004) and the American Vacuum Society (AVS) (2007). He was a Board Member for AIMBE from 2009-2013 and Co-Chaired 6 AIMBE/NIH Workshops on “Validation and Qualification of New In Vitro Tools and Models for The Pre-clinical Drug Discovery Process” held at the NIH Campus, Bethesda, MD (2012 – 2017). Dr. Hickman along with Dr. Michael Shuler, won the Lush Prize, in the Science Category, which Supports Animal Free Testing in 2015. He has 135 publications and 20 book chapters, in addition to 22 issued patents out of 44 total patent applications.

James Hickman Image

Integration of Cells with Silicon Devices for the Development of Functional Organ-on-a-Chip Systems for Preclinical Drug Discovery and Toxicology

Friday, 8 July 2016 at 11:00

Add to Calendar ▼2016-07-08 11:00:002016-07-08 12:00:00Europe/LondonIntegration of Cells with Silicon Devices for the Development of Functional Organ-on-a-Chip Systems for Preclinical Drug Discovery and ToxicologySELECTBIOenquiries@selectbiosciences.com

One of the primary limitations in drug discovery and toxicology research is the lack of good model systems between the single cell level and animal or human systems. In addition, with the banning of animals for toxicology testing in the EU, the development of body-on-a-chip systems to replace animals with human mimics is essential for product development and safety testing. Our research focus is on the establishment of functional in vitro systems to address this deficit where we seek to create organ mimics and their subsystems to model motor control, muscle function, myelination and cognitive function, as well as cardiac conduction and force generation. The idea is to integrate microsystems fabrication technology and surface modifications with protein and cellular components, for initiating and maintaining self-assembly and growth into biologically, mechanically and electronically interactive functional multi-component systems in a circulating serum-free medium. Our philosophy is to start with 2D systems and only add complexity as needed to address biological questions to keep cost of the system at a minimum. We are using this ability to manipulate biological systems and integrate them with silicon-based systems to create body-on-a-chip systems for high content drug discovery. Examples will be given of some of the more advanced body-on-a-chip systems including a recent 4-organ system, neuromuscular junction system, and integrated cancer subsystems that are being developed as well as the results of five workshops held at NIH to explore what is needed for validation and qualification of these platforms.


Add to Calendar ▼2016-07-07 00:00:002016-07-08 00:00:00Europe/LondonOrgans-on-Chips and 3D-Cultures: Technologies and ApproachesSELECTBIOenquiries@selectbiosciences.com