Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics: Emerging Themes, Technologies and Applications

Paul Bohn's Biography



Paul Bohn, Arthur J. Schmitt Professor of Chemical and Biomolecular Engineering and Professor of Chemistry and Biochemistry, University of Notre Dame

Paul W. Bohn received the B.S. from the University of Notre Dame in 1977 and the Ph.D. from the University of Wisconsin-Madison in 1981, both in Chemistry. After two years at Bell Laboratories, he joined the faculty at the University of Illinois at Urbana-Champaign (UIUC). In 2006, he moved to the University of Notre Dame where he is currently the Arthur J. Schmitt Professor of Chemical and Biomolecular Engineering, Professor of Chemistry and Biochemistry, and Director of the Institute for Precision Health. He served as Editor for the Americas for the RSC journal Analyst 2007-09 and as Chair of the Editorial Board 2010-14. Prof. Bohn is currently co-editor of Annual Review of Analytical Chemistry. His research interests include: (a) integrated nanofluidic and microfluidic chemical measurement strategies for personal monitoring, (b) chemical and biochemical sensing in mass-limited samples, (c) biochemical imaging, and (d) molecular approaches to nanotechnology, areas in which he has over 290 publications and 10 patents.

Paul Bohn Image

Bipolar Electrode Coupling of Nanoscale Electron Transfer Reactions to Remote Chromogenic and Luminogenic Reporter Reactions

Wednesday, 28 September 2016 at 15:00

Add to Calendar ▼2016-09-28 15:00:002016-09-28 16:00:00Europe/LondonBipolar Electrode Coupling of Nanoscale Electron Transfer Reactions to Remote Chromogenic and Luminogenic Reporter ReactionsSELECTBIOenquiries@selectbiosciences.com

The combination of fluorescence and absorption spectroscopy with electrochemistry presents new avenues for the study of redox reactions, with potential for enhanced throughput, sensitivity, and spatial resolution.  Here we present a novel configuration for coupling high sensitivity voltammetric measurements implemented in nanoscale architectures - such as nanopore-confined recessed ring-disk electrode arrays - with remote electrochemically-triggered chromogenic and fluorigenic reporter reactions.  Coupling is mediated by a mm-scale bipolar electrode which communicates the local solution potential in the analyte-measuring portion of the device to an opposing chromogenic or fluorigenic reporter reaction in a remote location.  Oxidation (reduction) of reversible analytes at the disk working electrode is accompanied by reduction (oxidation) on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of the reporter to produce a change in color or luminescence.  The remote end of the bipolar electrode is placed in a cell far from the nanopore ring-disk array so that highly efficient reporter measurements can be carried out conveniently against low intrinsic backgrounds.  The combination of bipolar eletrodes with luminescence in the dihydroresorufin/resorufin system has been used to study in situ generation of H2O2 in electrokinetic flow and for analytical  determinations down to pM limits of detection.  Applications of chromogenic reporter reactions for point-of-care (POC) use will also be described.


Add to Calendar ▼2016-09-26 00:00:002016-09-28 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics: Emerging Themes, Technologies and ApplicationsSELECTBIOenquiries@selectbiosciences.com