Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics 2020

Amy Herr's Biography

Amy Herr, Professor, University Of California Berkeley

Amy E. Herr received a BS degree in Engineering & Applied Science from the California Institute of Technology and MS and PhD degrees from Stanford University in Mechanical Engineering. From 2002-2007, she was a staff member in the Biosystems Research Group at Sandia National Laboratories (Livermore, CA). Professor Herr has been recognized as: 2012 Young Innovator Award from Analytical Chemistry/CBMS, 2012 Ellen Weaver Award from the Association for Women in Science (AWIS, for mentoring), 2011 NSF CAREER award, 2010 NIH New Innovator Award, 2010 Alfred P. Sloan Research Fellowship in chemistry, 2010 New Investigator Award in Analytical Chemistry from Eli Lilly & Co., 2009 Defense Advanced Research Projects Agency (DARPA) Young Faculty Award, among others. Professor Herr has been formally recognized for her teaching & mentoring. Her research interests include bioinstrumentation innovation needed to advance quantitation in life sciences and clinical problems, in particular the study and application of electrokinetic phenomena in multi-stage, heterogeneous bioanalytical microsystems.

Amy Herr Image

Precision Biology: Deep Profiling of Single Cells Using Electrophoretic Cytometry

Monday, 28 September 2020 at 15:00

Add to Calendar ▼2020-09-28 15:00:002020-09-28 16:00:00Europe/LondonPrecision Biology: Deep Profiling of Single Cells Using Electrophoretic CytometryLab-on-a-Chip and Microfluidics 2020 in Virtual ConferenceVirtual

Underpinning single-cell measurement tools, microfluidic design offers the throughput, multiplexing, and quantitation needed for rich, multi-dimensional data. Genomics and transcriptomics are leading examples. Yet, while proteins are the dynamic, downstream effectors of function, the immunoassay remains the de facto standard (flow cytometry, mass cytometry, immunofluorescence). We posit that to realize the full potential of high-dimensionality cytometry, new approaches to protein measurement are needed. I will describe our ‘electrophoretic cytometry’ tools that increase target selectivity beyond simple immunoassays. Enhanced selectivity is essential for targets that lack high quality immunoreagents – as is the case for the vast majority of protein forms (proteoforms).  I will share our results on highly multiplexed single-cell western blotting and single-cell isoelectric focusing that resolves single charge-unit proteoform differences. In fundamental engineering and design, I will discuss how the physics and chemistry accessible in microsystems allows both the “scale-down” of electrophoresis to single cells and the “scale-up” to concurrent analyses of large numbers of cells. Precise reagent control allows for integration of cytometry with sophisticated sample preparation – the unsung hero of measurement science. Lastly, I will link our bioengineering research to understanding the role of protein signaling and truncated isoforms in development of breast cancer drug resistance and understanding protein signaling in individual circulating tumor cells. Taken together, we view microfluidic design strategies as key to advancing protein measurement performance needed to address unmet gaps in quantitative biology and precision medicine.

Add to Calendar ▼2020-09-28 00:00:002020-09-30 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics 2020Lab-on-a-Chip and Microfluidics 2020 in Virtual ConferenceVirtual