Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Organ-on-a-Chip and Body-on-a-Chip: In Vitro Systems Mimicking In Vivo Functions

Roger Kamm's Biography



Roger Kamm, Cecil and Ida Green Distinguished Professor of Biological and Mechanical Engineering, Massachusetts Institute of Technology (MIT)

Kamm is currently the Cecil and Ida Green Distinguished Professor of Biological and Mechanical Engineering at MIT, where he has served on the faculty since 1978. Kamm has long been instrumental in developing research activities at the interface of biology and mechanics, formerly in cell and molecular mechanics, and now in engineered living systems. Current interests are in developing models of healthy and diseased organ function using microfluidic technologies, with a focus on vascularization. Kamm has fostered biomechanics as Chair of the US National Committee on Biomechanics (2006-2009) and of the World Council on Biomechanics (2006-2010). Kamm currently directs the NSF Science and Technology Center on Emergent Behaviors of Integrated Cellular Systems. He is the 2010 recipient of the ASME Lissner Medal (American Society of Mechanical Engineering) and the 2015 recipient of the Huiskes Medal (European Society of Biomechanics), both for lifetime achievements, and is the inaugural recipient of the ASME Nerem Medal for mentoring and education. He was elected to the National Academy of Medicine in 2010. Kamm is co-founder of two companies, Cardiovascular Technologies and AIM Biotech, a manufacturer of microfluidic systems for 3D culture.

Roger Kamm Image

Engineered Living Systems: Current State and Future Potential

Monday, 10 July 2017 at 10:00

Add to Calendar ▼2017-07-10 10:00:002017-07-10 11:00:00Europe/LondonEngineered Living Systems: Current State and Future PotentialSELECTBIOenquiries@selectbiosciences.com

Following on recent advances in understanding single cell behavior (Carrera & Covert, Trends in Cell Biology, 2015), and in developing simple, proof-of-concept biological machines (Raman et al., PNAS, 2015, Park et al., Science, 2016), organoids (Fatehullah et al, Nature Cell Biology, 2016), and organ-on-chip technologies (Huh, et al., Science, 2010), efforts are underway to standardize manufacturing methods for engineered living systems (ELS).  The approaches proposed, however, are widely divergent and often lack a sound basis due to the absence of a fundamental understanding of aspects unique to ELS – e.g., complexity, the central role of emergence – and fail to take advantage of their extraordinary capabilities – self-assembly, growth, self-repair, adaptation, learning.  
We need to build on our current knowledgebase for the development and design of ELS, rethinking much of what we have learned from abiotic engineered systems. A major effort is therefore required to characterize, model and image the dynamical behavior of ELS, and thus establish the design principles needed for robust manufacture. While many ELS can survive merely by diffusion of gases and nutrients from their environment, most systems exceeding several hundred microns in lateral dimension require some means for convective transport, such as the circulatory system found in many living organisms.  Several approaches have been employed to meet these needs, either by engineered conduits or induced network growth from seeded or suspended cells.  In this talk, some of these methods will be described, focusing on networks that form by self-assembly, tend toward a stabilized perfusable network within 1-2 weeks, synthesize and organize their own matrix environment, and adapt to changing conditions.  Both the successes and challenges of creating these networks will be discussed with the aim of developing reliable, vascularized ELS amenable to biomanufacture.


Add to Calendar ▼2017-07-10 00:00:002017-07-11 00:00:00Europe/LondonOrgan-on-a-Chip and Body-on-a-Chip: In Vitro Systems Mimicking In Vivo FunctionsSELECTBIOenquiries@selectbiosciences.com