Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Organ-on-a-Chip & Tissue-on-a-Chip Europe 2019

Tommy Andersson's Biography



Tommy Andersson, Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, AstraZeneca, Gothenburg

Tommy B. Andersson is a Senior Principal Scientist at Cardiovascular and Metabolic Disease, DMPK, AstraZeneca R&D Gothenburg. He is also a visiting professor at the Karolinska institute, department of Physiology and Pharmacology, section of pharmacogenetics. He has over 20 years scientific, management and project experience within the pharmaceutical industry and academia covering drug metabolism, dispositon and pharmacokinetics in projects from early drug discovery to life cycle management. Recently attanetion has been paid to stem cell technology and organotypic microphysiological systems and its applications in drug discovery. He is the author of 158 peer reviewed scientific publications.

Tommy Andersson Image

A Dynamic Micro-Physiological In vitro Model of Pancreatic Islet Microtissues and Liver Spheroids For Studies of Human Metabolic Diseases in Drug Discovery

Tuesday, 18 June 2019 at 18:00

Add to Calendar ▼2019-06-18 18:00:002019-06-18 19:00:00Europe/LondonA Dynamic Micro-Physiological In vitro Model of Pancreatic Islet Microtissues and Liver Spheroids For Studies of Human Metabolic Diseases in Drug DiscoveryOrgan-on-a-Chip and Tissue-on-a-Chip Europe 2019 in Rotterdam, The NetherlandsRotterdam, The NetherlandsSELECTBIOenquiries@selectbiosciences.com

Multi organ-on-a-chip technologies, emulating human physiology and mimicking human disease states, could aid preclinical efforts by providing relevant translational models to validate targets and test tool compounds early in drug discovery. Such models have the potential to improve translation to patients, decrease time spent in early clinical programs and reduce the need for animal models.

Rodent studies have shown that insulin resistance causes hepatocytes to produce secreted factors that influence the islets. Whether similar cross talk exist in man remains to be determined. We therefore decided to develop a human liver - pancreatic islets chip model. Pancreatic islets and liver spheroids were applied in a two-organ microfluidic chip supplied by TissUseā„¢ that allows cross talk between both organs. We have demonstrated that the model responds in a physiological way to a glucose load by increasing insulin secretion, which stimulates glucose consumption by the liver spheroids.  Both islet and liver spheroids show stable functionality as indicated by insulin secretion, albumin production and glucose consumption over the experimental period of two weeks. Liver spheroids were made insulin resistant, and pancreatic islets cell proliferation was induced by high glucose load. Thus the MPS model represents a relevant metabolic disease model.


Add to Calendar ▼2019-06-18 00:00:002019-06-19 00:00:00Europe/LondonOrgan-on-a-Chip and Tissue-on-a-Chip Europe 2019Organ-on-a-Chip and Tissue-on-a-Chip Europe 2019 in Rotterdam, The NetherlandsRotterdam, The NetherlandsSELECTBIOenquiries@selectbiosciences.com