Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Organ-on-a-Chip 2020

Kevin Healy's Biography

Kevin Healy, Jan Fandrianto and Selfia Halim Distinguished Professorship in Engineering, University of California, Berkeley

Kevin E. Healy, Ph.D. is the Jan Fandrianto and Selfia Halim Distinguished Professor in Engineering at the University of California at Berkeley in the Departments of Bioengineering, and Materials Science and Engineering. He served as Chair of the Department of Bioengineering from 2011 to 2015. He is a thought leader and innovator working at the interface between stem cells and materials science to develop dynamic engineered systems to explore both fundamental biological phenomena and new applications in translational medicine. His group currently conducts research in the areas of: bioinspired stem cell microenvironments to control stem cell lineage specification and self-organization into microtissues or organoids; bioinspired systems for regenerative medicine; biological interfaces; and, microphysiological systems for drug development, gene editing, and environmental toxicity screening. Professor Healy is an elected Fellow of AIMBE, AAAS, FBSE, BMES, and recently received an Alexander von Humboldt Foundation Award. He has chaired the Gordon Research Conference on Biomaterials and Biocompatibility, and has been honored with the 2011 Clemson award for outstanding contributions to basic biomaterials science. He is a named inventor on numerous issued United States and international patents relating to biomaterials, therapeutics, stem cells, and medical devices, and has founded several companies to develop these systems for applications in biotechnology and regenerative medicine.

Kevin Healy Image

Exploiting Cardiac Microphysiological Systems For COVID-19 Drug Screening

Monday, 28 September 2020 at 17:30

Add to Calendar ▼2020-09-28 17:30:002020-09-28 18:30:00Europe/LondonExploiting Cardiac Microphysiological Systems For COVID-19 Drug ScreeningOrgan-on-a-Chip 2020 in Virtual ConferenceVirtual

Our work has emphasized creating both healthy and diseased cardiac and liver microphysiological systems (MPS) or ‘organ chips’, to address the costly and inefficient drug discovery process. While MPS are poised to disrupt the drug development process and significantly reduce the cost of bringing a new drug candidate to market, the technology is more robust and creates a whole new paradigm in how to conduct safety pharmacology science, and advances medicine in revolutionary ways. An emerging use of MPS is in the evaluation of repurposed drugs to treat COVID-19. While repurposed drugs are typically FDA-approved for monotherapy, most have not been tested in polytherapy with  anti-inflammatory or antibiotic medications typically employed as part of intensive care protocols. Since COVID-19 patient morbidity is highly correlated with myocardial injury, independent of pre-existing cardiovascular disease, this presentation will address examples of exploiting our human cardiac MPS as unique testbeds for rapidly assessing the cardiac liability of polytherapy of repurposed COVID-19 drugs. Preclinical data generated will inform clinical trial design for polytherapies for COVID-19 patients, particularly regarding risks of potential drug-drug interactions or identifying appropriate exclusion criteria, monitoring strategies, and dose adjustments to minimize cardiac liabilities.

Add to Calendar ▼2020-09-28 00:00:002020-09-30 00:00:00Europe/LondonOrgan-on-a-Chip 2020Organ-on-a-Chip 2020 in Virtual ConferenceVirtual