Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics World Congress 2022

Nancy Allbritton's Biography



Nancy Allbritton, Frank and Julie Jungers Dean of the College of Engineering and Professor of Bioengineering, University of Washington in Seattle

Nancy L. Allbritton is the Frank and Julie Jungers Dean of the College of Engineering and Professor of Bioengineering at the University of Washington in Seattle.

Her research focuses on the development of novel technologies for applications in single-cell analysis, micro-arrays and fluidics, and organ-on-chip and has resulted in over 180 full-length journal publications and patents and led to 15 commercial products. Her research program has been well funded by the National Institutes of Health with $60 million in grant funding since 1994. Four companies have been formed based on her research discoveries: Protein Simple (acquired by Bio-Techne in 2014 for $308M), Intellego (subsequently integrated into International Rectifier), Cell Microsystems (www.cellmicrosystems.com), and Altis Biosystems (www.altisbiosystems.com). Dr. Allbritton is a Fellow of the American Association for the Advancement of Science, the American Institute for Medical & Biological Engineering, and the National Academy of Inventors. She obtained her B.S. in physics from Louisiana State University, M.D. from Johns Hopkins University, and Ph.D. in Medical Physics/Medical Engineering from the Massachusetts Institute of Technology, with a postdoctoral fellowship at Stanford University.

Nancy Allbritton Image

Picoliter Thin Layer Chromatography (pTLC) for Assay of Lipid Signaling in Single Cells

Monday, 12 December 2022 at 15:00

Add to Calendar ▼2022-12-12 15:00:002022-12-12 16:00:00Europe/LondonPicoliter Thin Layer Chromatography (pTLC) for Assay of Lipid Signaling in Single CellsLab-on-a-Chip and Microfluidics World Congress 2022 in Long Beach, CaliforniaLong Beach, CaliforniaSELECTBIOenquiries@selectbiosciences.com

Lipid signaling pathways regulate a multitude of cellular behaviors in humans including cell proliferation, death, migration, and many other attributes. These pathways are implicated in a host of diseases and many compounds are now in clinical trials to target these signaling cascades. However, most existing technologies for assay of cellular lipids possess poor sensitivity and require large sample volumes making them unsuitable for the assay of mammalian cells which are 1 pL in volume and may possess as little as 10-20 moles of key regulatory lipids. To address this challenge, an array of open microchannels filled with a monolithic silica was developed using microfabrication and sol-gel chemistry. When ultra-small volumes (<1 nL) of fluorescent lipids including [phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol 3,4,5-trisphosphate, phosphatidylcholine (PC), phosphatidylethanolamine (PE), 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, sphingosine, sphingosine-1-phosphate (S1P), and ceramide] were spotted at the channel inlet followed by separation, the lipids were detectable with excellent sensitivity (10-20 moles). To demonstrate the power of pTLC, leukemic cells were loaded with fluorescent PC, PE or sphingosine and a single cell printed at the inlet of a pTLC channel. PE and PC within a single cell were separated by pTLC in less than 1 min with excellent resolution and detection limits. When cells were loaded with a fluorescent sphingosine, the conversion of sphingosine to S1P was also detected and the reaction blocked by sphingosine kinase inhibitors. These novel biomedical microdevices can be fabricated in large scale arrays for fully automated, high-throughput assay of ultra-small-sized samples as well as for screening of therapeutic modulators of lipid signaling. These and other advances in biomedical microdevices are paving the way for rapid discoveries in basic and pharmaceutical sciences, as well as personalized medicine.


Add to Calendar ▼2022-12-12 00:00:002022-12-14 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics World Congress 2022Lab-on-a-Chip and Microfluidics World Congress 2022 in Long Beach, CaliforniaLong Beach, CaliforniaSELECTBIOenquiries@selectbiosciences.com