Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Biofabrication & Biomanufacturing Europe 2019

Gabor Forgacs's Biography

Gabor Forgacs, Professor, University of Missouri-Columbia; Scientific Founder, Organovo; CSO, Modern Meadow

Dr. Gabor Forgacs is a theoretical physicist turned bioengineer turned innovator and entrepreneur. He is the George H. Vineyard Professor of Biological Physics at the University of Missouri-Columbia, the Executive and Scientific Director of the Shipley Center for Innovation at Clarkson University and scientific founder of Organovo, Inc. and Modern Meadow, Inc. He was trained as a theoretical physicist at the Roland Eotvos University, Budapest, Hungary and the Landau Institute of Theoretical Physics, Moscow, USSR. He also has a degree in biology. His research interests span from topics in theoretical physics to physical mechanisms in early embryonic development. He is the co-author of the celebrated text in the field, “Biological Physics of the Developing Embryo” (Cambridge University Press, 2005) that discusses the fundamental morphogenetic mechanisms evident in early development. These mechanisms are being applied to building living structures of prescribed shape and functionality using bioprinting, a novel tissue engineering technology he pioneered. He is the author of over 160 peer-reviewed scientific articles and 5 books. He has been recognized by numerous awards and citations. In particular, he was named as one of the “100 most innovative people in business in 2010” by FastCompany.

Gabor Forgacs Image

Tissue Engineering and Biofabrication Beyond Medicine

Thursday, 20 June 2019 at 09:00

Add to Calendar ▼2019-06-20 09:00:002019-06-20 10:00:00Europe/LondonTissue Engineering and Biofabrication Beyond MedicineBiofabrication and Biomanufacturing Europe 2019 in Rotterdam, The NetherlandsRotterdam, The

Most tissue engineering efforts are focused on applications in regenerative medicine to improve the quality of life of patients. Despite spectacular progress in the last 20 years the expected breakthrough to replace dysfunctional tissues in the organism or mitigate the chronic shortage of donor organs has not yet been achieved. This is not surprising given the enormous challenge facing the biofabrication of complex living structures in vitro and the associated astronomical expenditures. Here we propose a more modest, but more realistic utilization of the knowledge accumulated in tissue engineering and associated biofabrication technologies over the years. As an example we detail specific efforts to engineer a particular compartment of a complex tissue, the skin that gives rise to  a commercially useful leather-like material. We compare our process with that followed by the leather industry to point out the advantages and disadvantages of both. We conclude by speculating more broadly on the significant potential social benefits of our approach.

Add to Calendar ▼2019-06-20 00:00:002019-06-21 00:00:00Europe/LondonBiofabrication and Biomanufacturing Europe 2019Biofabrication and Biomanufacturing Europe 2019 in Rotterdam, The NetherlandsRotterdam, The