Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Biofabrication & Biomanufacturing Europe 2019

Adam Feinberg's Biography



Adam Feinberg, CTO and Co-founder, FluidForm Inc., Professor of Biomedical Engineering, Carnegie Mellon University

Dr. Adam Feinberg is Co-Founder and CTO of FluidForm Inc, a start-up company commercializing FRESH 3D bioprinting technology, and a Professor at Carnegie Mellon University in the departments of Biomedical Engineering and Materials Science & Engineering. He earned his BS in Materials Science & Engineering from Cornell University in 1999 with Co-op experience at Abiomed, Inc., working on total artificial hearts. He then earned his PhD in Biomedical Engineering from the University of Florida, focused on engineering cell-material interactions to prevent and enhance adhesion. This was followed by postdoctoral training at Harvard University, developing new biomaterials and stem cell-based cardiac tissue engineering strategies. Dr. Feinberg has co-authored over 50 peer-reviewed publications, holds over 20 US patents and patent applications and has received multiple honors including the NSF CAREER Award, the NIH Director’s New Innovator Award, and Fellow of the American Institute for Medical and Biological Engineering. A primary research focus is engineering extracellular matrix (ECM) protein scaffolds using advanced biomanufacturing and 3D bioprinting approaches for multiple applications including cancer models, regenerative scaffolds, skeletal muscle and cardiac muscle tissue engineering. At FluidForm, he is driving the commercialization of the FRESH 3D bioprinting platform for a wide range of applications in the biopharma, medical device, and regenerative medicine industries.

Adam Feinberg Image

FRESH 3D Printing of Liquid and Soft Materials: New Applications From Regenerative Medicine to Wearable Sensing

Thursday, 20 June 2019 at 12:15

Add to Calendar ▼2019-06-20 12:15:002019-06-20 13:15:00Europe/LondonFRESH 3D Printing of Liquid and Soft Materials: New Applications From Regenerative Medicine to Wearable SensingBiofabrication and Biomanufacturing Europe 2019 in Rotterdam, The NetherlandsRotterdam, The NetherlandsSELECTBIOenquiries@selectbiosciences.com

Over the past decade, 3D bioprinting has rapidly expanded from a niche technology and in to a versatile platform for fabricating tissues with complex geometries and features ranging from the cellular to organ length scales. Recent advances include engineering the 3D cell microenvironment, hierarchical vascular networks in thick tissue constructs and biodegradable tissue scaffolds implanted in animal models and human patients. However, the range of additive manufacturing technologies currently used each has distinct advantages and disadvantages, and specifically it is critical to understand how the resolution of these different approaches dictate structure and function of the engineered tissue constructs. Here we will discuss our recent progress in the additive manufacturing of complex structures using hydrogels and various thermoset resins that are otherwise impossible to additively manufacture using alternative approaches. These structures are built by embedding the printed material within a temporary, thermoreversible, and biocompatible support fluid. This process, termed freeform reversible embedding of suspended hydrogels (FRESH), enables additive manufacturing of hydrogels with an elastic modulus less than 500 kPa. FRESH 3D printing also enables fabrication with thermoset and composite resins such as epoxies, acrylates, and siloxanes, and can host a range of polymerization mechanisms depending on the printed material, including ionic crosslinking, enzymes, pH change, heat/light exposure, and time-sensitive gelation approaches. We will demonstrate recent advances towards a range of new applications, including 3D printing of collagen for bioengineering functional tissue constructs and of silicone elastomers for patient-specific, wearable medical devices. Specific work is focused on cellularized collagen constructs to create functional cardiac tissues and extending these approaches to additional tissue and organ systems for in vitro disease modeling and in vivo regeneration.


Add to Calendar ▼2019-06-20 00:00:002019-06-21 00:00:00Europe/LondonBiofabrication and Biomanufacturing Europe 2019Biofabrication and Biomanufacturing Europe 2019 in Rotterdam, The NetherlandsRotterdam, The NetherlandsSELECTBIOenquiries@selectbiosciences.com