The NIH Microphyiological Systems Program: In Vitro 3D Models for Safety and Efficacy Studies

Friday, 6 October 2023 at 14:30

Add to Calendar ▼2023-10-06 14:30:002023-10-06 15:30:00Europe/LondonThe NIH Microphyiological Systems Program: In Vitro 3D Models for Safety and Efficacy StudiesLab-on-a-Chip and Microfluidics Asia 2023 in Tokyo, JapanTokyo, JapanSELECTBIOenquiries@selectbiosciences.com

Approximately 30% of drugs have failed in human clinical trials due to adverse reactions despite promising pre-clinical studies, and another 60% fail due to lack of efficacy. A number of these failures can be attributed to poor predictability of human response from animal and 2D in vitro models currently being used in drug development. To address this challenges in drug development, the NIH Tissue Chips or Microphysiological Systems program is developing alternative innovative approaches for more predictive readouts of toxicity or efficacy of candidate drugs. Tissue chips are bioengineered 3D microfluidic platforms utilizing chip technology and human-derived cells and tissues that are intended to mimic tissue cytoarchitecture and functional units of human organs and systems. In addition to drug development, these microfabricated devices are useful for modeling human diseases, and for studies in precision medicine and environment exposures. Presentation will elaborate in the development and utility of microphysiologicals sytems and in the partnerships with various stakeholders for its implementation.

Danilo Tagle, Director, Office of Special Initiatives, National Center for Advancing Translational Sciences at the NIH (NCATS)

Danilo Tagle

Dan Tagle is Director of the Office of Special Initiatives at NCATS where he many coordinates efforts towards development of disruptive technologies in translational research. He obtained his Ph.D. in Molecular Biology and Genetics from Wayne State University School of Medicine. He was an NIH National Research Service Award postdoctoral fellow in Human Genetics at the University of Michigan. He has served on numerous committees, advisory boards, and editorial boards. He has authored many scientific publications and has garnered numerous awards, including more recently the Roscoe O. Brady Award for Innovation and Accomplishment, and the Henry J. Heimlich Award for Innovative Medicine.