Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Innovations in Microfluidics 2023

Innovations in Microfluidics 2023 Agenda


Print Agenda

Thursday, 4 May 2023

00:00

Albert FolchConference Chair

Title to be Confirmed.
Albert Folch, Professor of Bioengineering, University of Washington, United States of America

00:00

Nancy AllbrittonKeynote Presentation

Title to be Confirmed.
Nancy Allbritton, Frank and Julie Jungers Dean of the College of Engineering and Professor of Bioengineering, University of Washington in Seattle, United States of America

00:00

Daniel ChiuKeynote Presentation

Title to be Confirmed.
Daniel Chiu, A. Bruce Montgomery Professor of Chemistry, University of Washington, United States of America

00:00

Steve SoperKeynote Presentation

Title to be Confirmed.
Steve Soper, Foundation Distinguished Professor, Director, Center of BioModular Multi-scale System for Precision Medicine, The University of Kansas, Adjunct Professor, Ulsan National Institute of Science & Technology, United States of America

00:00

Noah MalmstadtKeynote Presentation

Title to be Confirmed.
Noah Malmstadt, Professor, Mork Family Dept. of Chemical Engineering & Materials Science, University of Southern California, United States of America

00:00

Gregory NordinKeynote Presentation

Title to be Confirmed.
Gregory Nordin, Professor, Brigham Young University, United States of America

00:00

Shuichi TakayamaKeynote Presentation

High-Throughput Spheroid and Organoid Culture Standardization and Analysis
Shuichi Takayama, Professor, Georgia Research Alliance Eminent Scholar, and Price Gilbert, Jr. Chair in Regenerative Engineering and Medicine, Georgia Institute of Technology & Emory University School of Medicine, United States of America

This presentation will describe transitioning of microfluidic 3D cultures to high-throughput (96 and 384) droplet, microwell, and filter insert type 3D microscale models of the lung, kidney, and some cancers. The presentation will describe some of the underlying engineering technologies along with accompanying biomedical applications of the technologies. Additionally, this presentation will discuss some of the standardization challenges for these systems and some materials science and informatics solutions.

00:00

3D-Printed Autonomous Microfluidics
Ayokunle Olanrewaju, Assistant Professor, Bioengineering and Mechanical Engineering, University of Washington, United States of America

We envision a fundamental change in the design, prototyping, and deployment of point-of-care diagnostics to transform disease treatment and prevention. We design autonomous microfluidics, self-powered and self-regulated by capillary forces encoded in surface geometry and chemistry, to orchestrate instrument-free liquid handling. We rapidly and inexpensively prototype these devices using desktop 3D printing. These devices have the potential to enable real-time automation of complex biological processes directly at the point of need.

00:00

Sculpting Hydrogels and 3D Tissues with Open Microfluidics
Ashleigh Theberge, Associate Professor, University of Washington, United States of America

This talk will highlight advances in open microfluidics—fluid flow in spaces with one or more air-liquid interfaces—to pattern cells and extracellular matrix materials for regenerative medicine and cell signaling studies. Our methods are tunable and general, enabling 3D patterning of biomaterials that cannot be patterned using conventional 3D bioprinters.

00:00

H Tom SohKeynote Presentation

Real-Time Biosensors: Continuous Measurements of Biomolecules in Live Subjects
H Tom Soh, Professor, Stanford University, United States of America

A biosensor capable of continuously measuring specific molecules in vivo would provide a valuable window into patients’ health status and their response to therapeutics. Unfortunately, continuous, real-time molecular measurement is currently limited to a handful of analytes (i.e. glucose and oxygen) and these sensors cannot be generalized to measure other analytes.  In this talk, we will present a biosensor technology that can be generalized to measure a wide range of biomolecules in living subjects.  To achieve this, we develop synthetic antibodies (aptamers) that change its structure upon binding to its target analyte and produce an electrochemical current or emit light. Our real-time biosensor requires no exogenous reagents and can be readily reconfigured to measure different target analytes by exchanging the aptamer probes in a modular manner. Using our real-time biosensor, we demonstrate the first closed loop feedback control of drug concentration in live animals and discuss potential applications of this technology.  Finally, we will discuss methods for generating the aptamer probes which are at the heart of this biosensor technology.

00:00

Matthias von HerrathKeynote Presentation

Title to be Confirmed.
Matthias von Herrath, Vice President and Senior Medical Officer, Novo Nordisk, Professor, La Jolla Institute, United States of America


Agenda is not currently available
Add to Calendar ▼2023-05-04 00:00:002023-05-05 00:00:00Europe/LondonInnovations in Microfluidics 2023Innovations in Microfluidics 2023 in SeattleSeattleSELECTBIOenquiries@selectbiosciences.com