Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics Europe 2023


In-Plane Nanopore Sensors made in by Injection Molding for Detecting and Identifying Single Molecules via Resistive Pulse Sensing

Steve Soper, Foundation Distinguished Professor; Director, Center of BioModular Multi-scale System for Precision Medicine, Adjunct Professor, Ulsan National Institute of Science & Technology, The University of Kansas

Nanofluidic devices offer promising and highly innovative approaches for analyzing single molecules and obtaining biophysical information that cannot be realized using microfluidics due to scaling issues. The ability to provide reliable, rapid, quantitative, and low-cost identification of single molecules will offer exciting new opportunities for a broad range of biomedical applications. We are developing dual in-plane nanopore sensors in plastics for the label-free detection and identification of single molecules. The hypothesis behind our nanopore sensor is, “individual molecules moving electrokinetically through a 2D nanotube will experience a time-of-flight (ToF) that are dependent upon their molecular identity.” In this presentation we will discuss the high rate manufacturing of a nanopore sensor with sub-5 nm in-plane nanopores using nano-injection molding from a cyclic olefin polymer (COP) plastic. The in-plane pores are situated at either end of a nanochannel (50 x 50 nm; 5 µm long) that generate current transient signals to detect and deduce the identity of the single molecule. The ToF is dependent on the apparent electrophoretic mobility of the molecule. The identity is determined from the ToF, the current transient amplitudes, and dwell times using multi-parameter Principle Component Analysis (PCA). We will show the ability to detect (detection efficiency ~100%) single ribonucleotide and deoxynucleotide monophosphates with identification accuracies exceeding 98%. Integrating the in-plane nanopore sensor with a solid-state nanoreactor results in a nanofluidic device that can be configured to provide molecular information from unamplified DNA/RNA targets with unprecedented capabilities. This will transform single-molecule processing to allow servicing a broad biomedical community for a wide range of applications, for example single-molecule sequencing.

Add to Calendar ▼2023-06-19 00:00:002023-06-20 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics Europe 2023Lab-on-a-Chip and Microfluidics Europe 2023 in Rotterdam, The NetherlandsRotterdam, The