Tuesday, 5 June 2018


Conference Registration, Materials Pick-Up, Morning Coffee, Tea and Breakfast Pastries

Session Title: Conference Opening Plenary Session

Plenary Session Chairman: Richard Spero, Ph.D., Co-Founder and CEO, Redbud Labs: Advanced Microfluidic Technologies


Amy  ShenKeynote Presentation

Nanoplasmonic Biosensors: From Innovative Materials to Multimode Sensing with Integrated Microdevices
Amy Shen, Professor, Okinawa Institute of Science and Technology, Japan

Gold nanostructures are a highly attractive class of materials with unique electrochemical and optical sensing properties. Recent developments have greatly improved the sensitivity of optical sensors based on metal nanostructured arrays. We introduce the localized surface plasmon resonance (LSPR) sensors and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events. We then describe recent progress in three areas representing the most significant challenges: integration of LSPR with complementary electrochemical techniques, long term live-cell biosensing and practical development of sensors and instrumentation for routine use and high-throughput detection. As an example we will demonstrate a novel refractive index and charge sensitive device integrated with nanoplasmonic islands to develop nano-metal-insulator-semiconductor (nMIS) junctions. The developed sensor facilitates simultaneous detection of charge and mass changes on the nanoislands due to biomolecule binding. A brief insight on microcontact printing to functionalize proteins on nanoplasmonic sensors will also be discussed. The developed nanosensors can readily be adopted for multiplexed and high throughput label-free immunoassay systems, further driving innovations in biomedical and healthcare research.


Martyn BoutelleKeynote Presentation

Towards Wearable Real-Time Clinical Monitoring Using Microfluidic Devices
Martyn Boutelle, Professor of Biomedical Sensors Engineering, Vice Chair Department of Bioengineering, Imperial College London, United Kingdom

Modern acute critical care medicine is increasingly seeking to protect vulnerable tissue from damage by monitoring the patterns of physical, electrical and chemical changes taking place in tissue – so called multimodal monitoring. Such patterns of molecular changes offer the exciting possibility of allowing clinicians to detect changes in patient condition and to guide therapy on an individualized basis in real time. Microfluidic lab-on-chip devices coupled to tissue sampling using microdialysis provide an important new way for measuring real-time chemical changes as the low volume flow rates of microdialysis probes are ideally matched to the length scales of microfluidic devices. In this presentation, I will describe the combination of miniature electrochemical sensors and biosensors with 3D printed microfluidic devices for transplant organ and patient monitoring. Concentrations of key biomarker molecules can then be determined continuously using either optically or electrochemically, using amperometric, potentiometic and array sensors.  Wireless devices allow analysis to take place close to the patient. Droplet-based microfluidics, by digitizing the dialysis stream into discrete low volume samples, both minimizes dispersion allowing very rapid concentration changes to be measured, and allows rapid transport of samples between patient and analysis chip. This talk will overview successful design, optimization, automatic-calibration and use of both continuous flow and droplet-based microfluidic analysis systems for real-time clinical monitoring, using clinical examples from our recent work.


Gregory TimpKeynote Presentation

Silicon Nanotechnology Meets Biology (Smaller and Wetter is Better)
Gregory Timp, Keough-Hesburgh Professor of Electrical Engineering & Systems Biology, The University of Notre Dame, United States of America

According to Moore’s law, the scaling of silicon integrated circuits is supposed to reach the 5 nm-node sometime after 2020, although the schedule is still problematic due to the astronomical cost and atomically precise line-rules. On the other hand, biology has been performing cost-effectively using proteins the size of 5 nm (and smaller) that fold with atomic precision for 4.28 billion years now—it is a robust and proven technology, albeit wet. In this talk, it is argued that there is still “plenty of room at the bottom” for improving performance if silicon nanotechnology is adapted to biology. With silicon nanotechnology it is now within our grasp to create an interface to biology on a nanometer-scale. Three examples of such interfaces are proffered. The first is a liquid flow cell that works like an envelope made from 30 nm-thick silicon nitride membranes, which can hold and sustain living cells in medium and yet fits inside a Scanning Transmission Electron Microscope (STEM). In a STEM, the liquid cell can be used to visualize and track live cell physiology like a phage infecting a bacterium with nucleic acids at 5 nm resolution. The second is a nanometer-diameter pore sputtered through a silicon nitride membrane 10-nm-thick that can be used to transfect cells precisely with nucleic acids to affect gene expression in them and, under different bias conditions, detect protein secretions from single cells with single molecule sensitivity. The secretions inform on the cell phenotype and offer a molecular diagnosis of disease. Finally, the third interface is a sub-nanometer-diameter pore, which is about the size of an amino acid residue, in either silicon dioxide or silicon nitride membranes ranging from 6 to 10 nm-thick.  Sub-nanopores like this have been used to read the primary structure of a protein, i.e. the amino acid sequence, with low fidelity, but with single molecule sensitivity, vastly outstripping the sensitivity of conventional methods for sequencing such as mass spectrometry. Taken altogether, the prospects are dazzling for a new type of integrated circuit that incorporates biology with state-of-the-art silicon electronics.


Morning Coffee Break and Networking in the Exhibit Hall


Steve SoperKeynote Presentation

Extracellular Vesicles (EVs) and Cell Free DNA (cfDNA) as Blood-based Biomarkers: Plastic-based Microfluidics for their Enrichment and Analysis
Steve Soper, Foundation Distinguished Professor, Director, Center of BioModular Multi-scale System for Precision Medicine, The University of Kansas, United States of America

While there are a plethora of different blood-based markers, EVs are generating significant interests due to their relatively high abundance (~1013 particles per mL of blood) and the information they carry. EVs contain a diverse array of nucleic acids, such as mRNA, lncRNA, and miRNA that can be used for disease management. In addition to EVs, cfDNA also are biomarkers that can be used to help manage different disease states using the mutations they possess that can have high diagnostic value. In spite of the relatively high abundance of cfDNA in diseased patients (~160 ng/mL), the extraction and enrichment of cfDNA has been inefficient, even by commercial kits, due to the low abundance of the tumor bearing DNA fragments (<0.01%) and the short nature of these fragments, especially cancer-related cfDNA (as small as 50 bp). In this presentation, we will discuss the design, fabrication and analytical figures-of-merit of a microfluidic device that can serve the dual purpose for the affinity-based selection of EVs and the solid phase extraction of cfDNA directly from plasma using the same device. The microfluidic is made from a plastic that can be injection molded to produce high quality devices at low cost. For EVs, the device is made cyclic olefin copolymer (COC) is UV/O3 activated to allow for the efficient immobilization of affinity agents to the surface of the device. In the case of cfDNA, the device is made from COC as well, but is only UV/O3 activated (i.e., no affinity agents used). Information will be provided as to the ability to molecularly profile the cargo contained within the affinity-selected EVs, in particular mRNA expression profiling. We will also discuss the use of this microfluidic to isolate with high recovery cfDNA from plasma samples with size selection capabilities. The isolated cfDNA could be queried for mutations using an allele-specific ligation detection reaction at a mutant to wild-type ratio <0.1%.


Roger KammKeynote Presentation

Microphysiological Models Relying on Emergence of Multi-Cellular Engineered Living Systems
Roger Kamm, Cecil and Ida Green Distinguished Professor of Biological and Mechanical Engineering, Massachusetts Institute of Technology (MIT), United States of America

Recent work from many labs has demonstrated the unique capability of cells placed in 3D culture to self-organize into functional units and organ-like systems.  In some cases, pluripotent cells can be induced to differentiate down independent pathways, leading to an organoid.  In others, interacting units can be generated, often from iPS cells, and ‘engineered’ to interact in a way that recapitulates certain aspects of in vivo function or disease.  Such models have tremendous potential both to gain new insight into disease processes and for moderate throughput drug screening.  In this talk I will describe several models developed in our lab including a neuromuscular junction, blood-brain barrier, and vascularized skeletal muscle, addressing some of the design principles they have in common, the future potential, and barriers to progress.


Moran BercoviciKeynote Presentation

Microscale Flow Patterning
Moran Bercovici, Associate Professor, Faculty of Mechanical Engineering; Head, Technion Microfluidic Technologies Laboratory, Technion, Israel Institute of Technology, Israel

The ability to manipulate fluids at the microscale is a key element of any lab-on-a-chip platform, enabling core functionalities such as liquid mixing, splitting and transport of molecules and particles. Lab-on-a-chip devices are commonly divided in two main families: continuous phase devices, and discrete phase (droplets) devices. While a large number of mechanisms are available for precise control of droplets on a large scale, microscale control of continuous phases remains a substantial challenge. In a traditional continuous-flow microfluidic device, fluids are pumped actively (e.g. by pressure gradients, electro-osmotic flow) or passively (e.g. capillary driven) through a fixed microfluidic network, making the device geometry and functionality intimately dependent on one another (e.g. DLD, inertial mixer, H-separator, etc.). The advent of on-chip microfluidic valves brought more flexibility in routing fluids through microfluidic networks, adding a dynamic dimension to the static geometrical network. However, the number of degrees of freedom of valve-based systems is restricted by their dependence on bulky pneumatic lines (regulators, pressure systems, controllers), which are difficult to scale down in size and cost. In this talk I will present our ongoing work leveraging non-uniform EOF and thermocapillary flows to control flow patterns in microfluidic chambers.  By setting the spatial distribution of surface potential or a spatial temperature distribution, we demonstrate the ability to dictate desired flow patterns without the use of physical walls. We believe that such flow control concepts will help break the existing link between geometry and functionality, bringing new capabilities to on-chip analytical methods.


Networking Lunch in the Exhibit Hall -- Meet the Exhibitors and View Posters

Session Title: Technology Development in the Organ-on-a-Chip Field, circa 2018


Tommy AnderssonKeynote Presentation

Functional Coupling of Human Pancreatic Islet Microtissues and Liver Spheroids in a Novel Micro-physiological Multi-organ System For Studies of Human Metabolic Diseases in Drug Discovery
Tommy Andersson, Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, AstraZeneca, Gothenburg, Sweden

Multi organ-on-a-chip technologies, emulating human physiology and mimicking human disease states, could aid preclinical efforts by providing relevant translational models to validate targets and test tool compounds early in drug discovery. Such models have the potential to improve translation to patients, decrease time spent in early clinical programs and reduce the need for animal models. Rodent studies have shown that insulin resistance causes hepatocytes to produce secreted factors that influence the islets. Whether similar cross talk exist in man remains to be determined. We therefore decided to develop a human liver - pancreatic islets chip model. Pancreatic islets and liver spheroids were applied in a two-organ microfluidic chip supplied by TissUse™ that allows cross talk between both organs. We have demonstrated that the model responds in a physiological way to a glucose load by increasing insulin secretion, which stimulates glucose consumption by the liver spheroids.  Both islet and liver spheroids show stable functionality as indicated by insulin secretion, albumin production and glucose consumption over the experimental period of two weeks. Initial results indicate that the liver spheroids can be made insulin resistant, and thus represent a relevant metabolic disease model.


Peripheral Nerve-on-a-Chip: Quantifying Myelination and Demyelination
Michael Moore, Associate Professor of Biomedical Engineering; Co-founder and CSO, AxoSim Technologies, Tulane University, United States of America

Development of microphysiological models of the peripheral nervous system have lagged that of other organ systems. This is perhaps partially because peripheral nerve disorders are rarely life-threatening, though they are frequently severely debilitating. The most effective organ-on-a-chip models are those that reflect relevant anatomical and physiological features, enabling comparisons with animal studies or clinical outcomes. In our model of rat myelinated peripheral nerve, we show that we can quantify key measurements using histology and nerve conduction, exactly the main quantitative endpoints used in preclinical or clinical studies to assess peripheral nerve degeneration. In particular, we show that nerve conduction velocity correlates with myelin formation, as measured by % myelinated axons and g-ratio. In like manner, induced demyelination leads to structural degeneration and functional deficits that may also be quantified using histology and nerve conduction. This model is unique in its ability to capture these specific metrics of peripheral nerve health. Ongoing challenges and implications for modeling demyelinating disorders will also be discussed.


TissUse GmbHCombining Organ Equivalents Using the Multi-Organ-Chip Technology
Ilka Maschmeyer, Senior Scientist, TissUse GmbH

The understanding of the bioavailability and metabolism of a chemical, either locally or systemically, is a key aspect in safety assessment. However, present in vitro and animal tests for drug development do not reliable predict the human outcome of tested drugs or substances because they are failing to emulate the organ complexity of the human body, leading to high attrition rates in clinical studies. For example, absorption, distribution, metabolism and excretion (ADME) are key determinants of efficacy and safety for therapeutic candidates. However, these systemic responses of applied substances are ignored in most in vitro tests. Here we present a universal microfluidic chip platform the size of a microscopic slide, consisting of an on-chip micro-pump and capable to interconnect different organ equivalents.


Afternoon Coffee Break and Networking in the Exhibit Hall


Andries D. van der MeerKeynote Presentation

Human Organs-on-Chips
Andries D. van der Meer, Tenure Track Assistant Professor, University of Twente, Netherlands

Organs-on-chips are plastic microdevices the size of a USB-stick with microchannels and small chambers that are filled with liquid. The devices contain multiple human cell types which are cultured in a technologically controlled microenvironment that artificially mimics aspects of the human body like morphology, movement, flow, electrical stimuli and liquid gradients. The resulting device emulates human organ functions and can be used to study biomedical phenomena in the lab. By using patient-specific cells, blood samples, biometrics and imaging data to develop ‘personalized organs-on-chips’, we can study health and disease in models that are relevant for specific patients. The power of such a ‘personalized’ approach is demonstrated in our application of organs-on-chips in studies of thrombosis and vascular biology.


George TruskeyKeynote Presentation

Human Vascular Microphysiological System Models for Drug Testing and Disease Modeling
George Truskey, R. Eugene and Susie E. Goodson Professor of Biomedical Engineering, Duke University, United States of America

We developed an endothelialized tissue engineered blood vessel (eTEBV) microphysiological system by rapid generation of small-diameter vessels (400-800 µm) by plastic compression. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses immediately after fabrication.  eTEBVs perfused at physiological shear stresses for 1- 5 weeks expressed von Willebrand factor (vWF) and demonstrated EC-specific release of NO, indicating a confluent layer of ECs. After 1-5 weeks of perfusion, eTEBVs exhibited dose-dependent contraction and relaxation following exposure to phenylephrine and acetylcholine (ACh), respectively. In contrast, TEBVs without ECs or eTEBVs pre-treated with the NO synthase inhibitor L-NG-Nitroarginine methyl ester underwent vasoconstriction in response to ACh consistent with vasodilation by EC release of NO. TEBVs elicited reversible activation following acute stimulation by TNFa which transiently inhibited ACh-induced relaxation, and was eliminated by pre-exposure of eTEBVs to therapeutic doses of statins. TNFa treatment also promoted monocyte adhesion and transmigration.  Using smooth muscle cells and endothelial cells derived from iPSCs, we produced a functional eTEBV model of Hutchison-Gilford Progeria Syndrome (HGPS), a rare, accelerated aging disorder caused by an altered form of the lamin A (LMNA) gene termed progerin.  eTEBVs fabricated with smooth muscle cells from individuals with HGPS show reduced vasoactivity, increased medial wall thickness, increased calcification and apoptosis in comparison to eTEBVs fabricated with smooth muscle cells from normal individuals or primary MSCs.  In addition, treatment with the rapamycin analog, RAD001, increased HGPS TEBV vasoactivity and reduces some disease symptoms.  These results indicate that we can use human eTEBVs to model diseases in vitro.


Olivier GuenatKeynote Presentation

Lung-on-Chip Models of the Healthy and Diseased Lung Parenchyma
Olivier Guenat, Head, Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern-Switzerland, Switzerland

The complexity of the lung can be illustrated by its delicate tree-like architecture that ends with the alveolar sacs, where the gas exchanges take place. This whole environment is subjected to a cyclic, mechanical constraint induced by the respiratory movements. We recently reported about an advanced in-vitro model of the lung parenchyma that mimics the key aspects of the lung alveolar environment in an unprecedented way (Stucki et al., Lab Chip, 2015). The system reproduces the three-dimensional mechanical strain induced by the respiratory movements, the air-liquid interface and the ultra-thin barrier, using an elastic membrane made of a 3um thin PDMS porous (3um pores) layer on which cells can be cultured on both sides. We could demonstrate that the physiological mechanical stress significantly affects a number of barrier functions, such as the transport of molecules though the barrier. Furthermore, in view to make the system widely accessible, great care was taken to make it robust and simple to use. In contrast to the lung-on-chip reported by the Wyss Institute in Boston (Huh et al. Science 2010), our device mimics the three-dimensional movements induced by the respiration (instead of a unidirectional stress in the Wyss lung-on-chip). We also demonstrated that the three-dimensional breathing motions of the alveolar barrier can be monitored in real time with a micro-impedance tomography system (Mermoud et al., Sensors and Actuators B: 2018). The development of the lung-on-chip was awarded with a number of prizes, including the Venturekick awards, a nomination at the Swiss Medtech Award in 2017 and is currently under development at AlveoliX, a start-up aimed at bringing organs-on-chip on the market. Recently, we reported about another part of the lung alveolar barrier, the lung microvasculature.  Lung endothelial cells and lung pericytes seeded in a micro-engineered environment filled with fibrin gel, self-assemble to build a network of perfusable and contractile microvessels of only a few tens of micrometers in diameter (Bichsel et al., Tissue Eng. A, 2015). We could demonstrate for the first time in-vitro that microvessels contract upon exposure to a vasoconstrictor. This model, made of primary human cells of the lung is of great relevance for the investigation of pathomechanism of lung diseases.


Danilo TagleKeynote Presentation

Validating Microphysiological Systems
Danilo Tagle, Associate Director For Special Initiatives, National Center for Advancing Translational Sciences at the NIH (NCATS), United States of America


Microfluidic ChipShop GmbHChallenges and Solutions for Industrial Manufacturing of Organ-on-a-Chip Devices
Holger Becker, Chief Scientific Officer, Microfluidic ChipShop GmbH

While organ-on-a-chip is an academically thriving field in recent years, the successful commercialization of such devices will depend on the ability for industrial manufacturing. The presentation will highlight a variety of organ-on-a-chip devices which have been developed with methods paving the way towards commercial use and the associated challenges for volume manufacturing.


Networking Reception in the Exhibit Hall with Beer and Wine. Engage with the Exhibitors, View Posters in a Relaxed Setting at the De Doelen Rotterdam


Close of Day 1 of the Conference

Wednesday, 6 June 2018


Morning Coffee, Breakfast Pastries and Networking

Session Title: The Utilization of Organs-on-Chips in Drug Discovery and Applications Development


Advanced in vitro Cellular Systems as Platforms for Drug Development
Nikolce Gjorevski, Scientist, Mechanistic Safety, Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Switzerland


Advancing Pre-Clinical Safety Assessment with Organs-on-Chips
Rhiannon David, Senior Scientist, AstraZeneca, United Kingdom

Organs-on-chips (microphysiological systems (MPS)) aim to recapitulate the architecture, cell-cell interactions, and microenvironment of different tissues, which is more representative of their complex in vivo biology. Human-sourced MPS provide an opportunity to generate safety and efficacy data for drug development with improved clinical relevance over more traditional animal models. This presentation will outline the context of use of MPS at AstraZeneca and give examples of data generated from these systems, with a focus on the development of a bone marrow-on-a-chip to better predict clinically-observed toxicity.


James HickmanKeynote Presentation

Concurrent Toxicity and Efficacy Evaluations in Multi-Organ Functional Human-on-a-Chip Systems
James Hickman, Professor, Nanoscience Technology, Chemistry, Biomolecular Science and Electrical Engineering, University of Central Florida; Chief Scientist, Hesperos, United States of America

The current drug development process is inefficient, taking years from target compound identification to marketable drug, and costs up to 2 billion dollars during the process. The considerable attrition-rate of drug candidates at all stages of development to a significant extent arises from the poor predictive nature of preclinical models for efficacy and toxicity, especially the inability to translate efficacy between preclinical and clinical situations. Systems capable of directly measuring organ function, biomarker release, and most importantly the synergistic interactions between organs, especially the generation of liver metabolites would be ideal. Body-on-a-chip systems utilize function based cell models that accurately capture and predict multi organ complexity in response to administered compound within correctly scaled and physiologically relevant platforms. This data can then theoretically be used to produce relevant modeling information related to drug responses in clinical settings, and thereby provide accurate predictions of a compound’s patient specific toxicology and efficacy. We have demonstrated functional human models to evaluate multi-organ toxicity in 2-, 3- and 4-organ systems under continuous flow conditions in a serum-free defined medium utilizing a pumpless platform for 28 days with cardiac, muscle, cancer, neuronal and liver modules. The pharmacological relevance of these integrated modules was evaluated with drugs and compared to human and animal data and these results will be presented. There currently is also a focus at the NIH, FDA and EMA to understand how one could validate these systems such that qualification could be granted for their use to augment and possibly replace animal studies. This talk will also give results of six workshops held at NIH as a collaboration between the American Institute for Medical and Biological Engineering (AIMBE) and NIH to explore what is needed for validation and qualification of these new systems.


Morning Coffee Break and Networking in the Exhibit Hall


Microfabrication Technologies For Organ-on-Chip Applications
Marcel Karperien, Professor, University of Twente, Netherlands


Towards High Content & High Throughput Screening Platforms: Enabling Technologies to Advance Organ-on-a-Chip Systems
Peter Loskill, Attract Group Manager Organ-on-a-Chip, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Germany

Drug discovery and development to date has relied on animal models, which are useful, but fail to resemble human physiology. The discovery of human induced pluripotent stem (iPS) cells has led to the emergence of a new paradigm of drug screening using human patient- and disease-specific organ/tissue-models. One promising approach to generate these models is by combining the iPS technology with microfluidic devices tailored to create microphysiological environments and recapitulate 3D tissue structure and function. Such microphysiological organ-on-a-chip systems (OoCs) combine human genetic background, in vivo-like tissue structure, physiological functionality, and “vasculature-like” perfusion. Using microfabrication techniques, we have developed multiple OoCs that incorporate complex human 3D tissues and keep them viable and functional over multiple weeks, including a “Retina-on-a-chip”, a “Heart-on-a-chip” and a “White adipose tissue (WAT)-on-a-chip”. The OoCs generally consist of three functional components: organ-specific tissue chambers mimicking in vivo structure and microenvironment of the respective tissues; “vasculature-like” media channels enabling a precise and computationally predictable delivery of soluble compounds (nutrients, drugs, hormones); “endothelial-like” barriers protecting the tissues from shear forces while allowing diffusive transport. The small scale and accessibility for in situ analysis makes our OoCs amenable for both massive parallelization and integration into a high-content-screening approach. The adoption of OoCs in industrial and non-specialized laboratories requires enabling technology that is user-friendly and compatible with automated workflows. We have developed technologies for automated 3D tissue generation as well as flexible plug&play connection of individual OoCs into multi-organ-chips. These technologies paired with the versatility of our OoCs pave the way for applications in drug development, personalized medicine, toxicity screening, and mechanistic research.


Recreating Neurovascular Function Using Organ-on-Chips
Anna Herland, Assistant Professor, Department of Physiology and Pharmacology, Karolinska Institute, Sweden

The neurovascular unit (NVU) is a restrictive barrier essential for function and health of the central nervous system (CNS). The NVU lines the 400 miles of capillaries that course through the brain and spinal cord and is formed by a complex network of endothelial cells, astrocytes, pericytes, neurons and a basal lamina. Despite being of major importance for evaluating brain targeting of drugs and disease-induced alternations the established in vitro models of the NVU are disappointingly non-predictive. Animal in vivo models typically also fail to severe as models of the human NVU and CNS due to species-specific differences. We used micro-engineering to create vascular-mimicking, fluidic Organ-on-Chip models of NVU. These models were populated with human primary or stem cell derived vascular and neural cells. The design of the NVU-on-Chip was tailored after the on the biological study in focus. A 3D microfluidic NVU model was created to allow direct interaction between the human endothelium and perivascular cells such as astrocytes or pericytes. This configuration resulted in higher barrier function and a more in vivo like response to an acute inflammation compared to a traditional culture. For evaluation of drug efflux properties and penetration of biopharmaceuticals, we developed a compartmentalized NVU-on-Chip system. This system also facilitated studies of drug-induced blood-brain-barrier alternations.


Neuropsychiatric Disease Modeling Using Human Pluripotent Stem Cells
Steven Kushner, Professor and Chair of Neurobiological Psychiatry, Erasmus University Medical Center, Netherlands

There is yet no satisfying evidence-based biological mechanism for any psychiatric disorder, likely due to the extraordinary complexity of the brain and the difficulties inherent in studying human neurophysiology. Towards the goal of establishing standardized methods for investigating the pathophysiology of human brain disorders, we have developed novel state-of-the-art methods for differentiating physiologically active three-dimensional (3D) neuronal networks from human patient-derived induced pluripotent stem cells, offering the unique opportunity to investigate the molecular and cellular pathophysiology of disease initiation and progression. In my lecture, I will discuss the implementation of this methodology and the electrophysiological properties of the resulting neuronal networks.  Moreover, I will describe the successful application of this approach for revealing fundamental insights into the neurobiology of schizophrenia using a family-based design supported by next-generation sequencing.


Networking Lunch -- Meet the Exhibitors and View Posters


Elisabeth VerpoorteKeynote Presentation

Engineering Multicompartment Organ-Chip Systems
Elisabeth Verpoorte, Professor of Analytical Chemistry and Pharmaceutical Analysis, University of Groningen, Netherlands

The miniaturized total chemical analysis system has been successfully repurposed over the past twenty years or so for engineering cellular microenvironments which more faithfully mimic in vivo conditions for cell- and tissue-based studies. Organs-on-a-chip are a recent outgrowth of this effort, comprising systems that extend beyond microfluidic perfusion culture to allow the establishment of microphysiological systems comprising interconnected multiorgan systems. This presentation will consider a couple of examples of such systems out of our labs in Groningen for the elucidation of organ (inter)actions in the gastrointestinal tract and the liver.


Shoji TakeuchiKeynote Presentation

Cell Fiber Technology For 3D Organ-on-a-Chip Application
Shoji Takeuchi, Professor and Director, Collaborative Research Center for Bio/Nano Hybrid Process, Institute of Industrial Science, The University of Tokyo, Japan


Geraldine A HamiltonKeynote Presentation

Title to be Confirmed.
Geraldine A Hamilton, President/Chief Scientific Officer, Emulate Inc, United States of America


Noo Li JeonKeynote Presentation

Title to be Confirmed
Noo Li Jeon, Professor, Seoul National University, Korea South


Quantitative Assessment of Tissue Chip Technologies
Murat Cirit, Director at Translational Center of Tissue Chip Technologies, Massachusetts Institute of Technology (MIT), United States of America

A large percentage of drug candidates fail at the clinical trial stage due to a lack of efficacy and unacceptable toxicity, primarily because the in vitro cell culture models and in vivo animal models commonly used in preclinical studies provide limited information about how a drug will affect human physiology. The need for more physiologically relevant in vitro systems for preclinical efficacy and toxicity testing has led to a major effort to develop “Microphysiological Systems (MPS)”, aka tissue chips (TC), based on engineered human tissue constructs. Translational Center of Tissue Translational Center of Tissue Chip Technologies (TC2T) has been established to bridge between academic research and development and industrial application of MPS technologies via providing unbiased testing and validation of MPS technologies. TC2T takes a holistic and mechanistic approach—based on quantitative systems pharmacology (QSP)— to achieve unbiased characterization of these complex systems and translation of experimental insights to clinical outcomes. Our team at MIT includes tissue engineers, experimentalists, and computational biologists and serves as the core of the testing center to identify adverse effects of pharmaceutical compounds and environmental toxin on human organs.


Microstructured 3D Cell Culture Scaffolds
Maria Tenje, Senior Lecturer, Uppsala University, Sweden

I will present our work on micropatterning of 3D cell culture scaffolds using natural hydrogels. The hydrogels can be well-defined in thickness and lateral resolution on the micrometer scale. These materials can serve as the basis of novel 3D in vitro models.


Systematic Investigation of the Effect of Shear Stress in a Microfluidic Intestine-on-a-Chip Model to study oral delivery of vaccines
Ludivine Delon, Researcher, Future Industries Institute, University of South Australia, Australia

After investigating the effect of shear stress on the functional and structural differentiation of an intestine-on-a-chip, microfluidic devices were developed to study the uptake and transport mechanisms (degradation of particles, biologic payload translocation, mucus interaction) of particulate carriers.