Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences 2D-to-3D Culture and Organoids 2020

Albert Folch's Biography

Albert Folch, Professor of Bioengineering, University of Washington

Albert Folch’s lab works at the interface between microfluidics and cancer. He received both his BSc (1989) and PhD (1994) in Physics from the University of Barcelona (UB), Spain, in 1989. During his Ph.D. he was a visiting scientist from 1990–91 at the Lawrence Berkeley Lab working on AFM under Dr. Miquel Salmeron. From 1994–1996, he was a postdoc at MIT developing MEMS under Martin Schmidt (EECS) and Mark Wrighton (Chemistry). In 1997, he joined Mehmet Toner’s lab as a postdoc at Harvard-MGH to apply soft lithography to tissue engineering. He has been at Seattle’s UW BioE since June 2000, where he is now a full Professor, accumulating over 9,800 citations. In 20 years, he has supervised 18 postdocs (17% of whom have reached faculty rank), 12 Ph.D. students (25% faculty rank), 15 M.S. students, and >40 undergraduates. In 2001 he received an NSF Career Award, in 2006 a NASA Space Act Award, and in 2014 he was elected to the AIMBE College of Fellows (Class of 2015). He serves on the Advisory Board of Lab on a Chip since 2006 and in the Editorial Board of Micromachines since 2019. He is the author of 5 books (sole author), including “Introduction to BioMEMS” (2012, Taylor&Francis), a textbook adopted by >88 departments in 18 countries, and “Microfluidics: Hidden in Plain Sight” (MIT Press, to appear in mid-2021). Since 2007, the lab runs a celebrated outreach art program called BAIT (Bringing Art Into Technology), which has produced seven exhibits, a popular resource gallery of >2,000 free images related to microfluidics and microfabrication, and a YouTube channel that plays microfluidic videos with music which accumulates ~157,000 visits since 2009.

Albert Folch Image

Microfluidics For Interrogating Intact Tumor Biopsies

Wednesday, 19 August 2020 at 14:30

Add to Calendar ▼2020-08-19 14:30:002020-08-19 15:30:00Europe/LondonMicrofluidics For Interrogating Intact Tumor Biopsies2D-to-3D Culture and Organoids 2020 in Boston, USABoston,

The intricate microarchitecture of tissues – the “tissue microenvironment” – is a strong determinant of tissue function. Microfluidics offers an invaluable tool to precisely stimulate, manipulate, and analyze the tissue microenvironment in live tissues and engineer mass transport around and into small tissue volumes. Such control is critical in clinical studies, especially where tissue samples are scarce (e.g. tumor biopsies), in analytical sensors, where testing smaller amounts of analytes results in faster, more portable sensors, and in biological experiments, where accurate control of the cellular microenvironment is needed (e.g. organ-on-a-chip). Microfluidics also provides inexpensive multiplexing strategies to address the pressing need to test large quantities of drugs and reagents on a single biopsy specimen, increasing testing accuracy, relevance, and speed while reducing overall diagnostic cost. I will discuss the development of our platforms for cancer diagnostics that allow for multiplexed functional drug testing on live, intact tissues in various formats: 1) tumor slices; 2) core needle biopsies; and 3) cuboids (precision-sliced tumor fragments that retain viability and the tumor microenvironment for several days). These platforms are currently under commercial development by startup OncoFluidics.

Add to Calendar ▼2020-08-19 00:00:002020-08-20 00:00:00Europe/London2D-to-3D Culture and Organoids 20202D-to-3D Culture and Organoids 2020 in Boston, USABoston,