Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Organ-on-a-Chip and Body-on-a-Chip: In Vitro Systems Mimicking In Vivo Functions

Michael Shuler's Biography

Michael Shuler, Samuel B. Eckert Professor of Engineering, Cornell University; President & CEO, Hesperos, Inc.

Michael L. Shuler is the Samuel B. Eckert Professor of Engineering in Biomedical Engineering and in the School of Chemical and Biomolecular Engineering at Cornell University and CEO of Hesperos. Shuler received both of his degrees in chemical engineering (BS, University of Notre Dame, 1969 and Ph.D., University of Minnesota, 1973) and has been a faculty member at Cornell University since January 1974. Shuler’s research is focused on biomolecular engineering and includes pioneering the development of “Body-on-a-Chip” or microphysiological system for testing pharmaceuticals and chemicals for toxicity, creation of production systems for useful compounds, such as paclitaxel from plant cell cultures, and constructions of computer models of cells relating physiological function to genomic structure. Shuler and F. Kangi have authored a popular textbook, “Bioprocess Engineering; Basic Concepts”. He has an honorary doctorate from the University of Notre Dame. He has received the Amgen Award in Biochemical Engineering, as well as the Professional Progress, Food, Pharmaceutical and Bioengineering Division Award, and the Warren K. Lewis Awards from the American Institute of Chemical Engineers. Also, he was the inaugural awardee for the J.E. Bailey Award from the Society for Biological Engineering. He received the Pritzker Award from Biomedical Engineering Society and the Marvin Johnson Award from the American Chemical Society. Shuler has been elected to membership in the National Academy of Engineering and the American Academy of Arts and Science and is a fellow of numerous other professional societies.

Michael Shuler Image

Agenda is not currently available
Add to Calendar ▼2018-10-04 00:00:002018-10-05 00:00:00Europe/LondonOrgan-on-a-Chip and Body-on-a-Chip: In Vitro Systems Mimicking In Vivo