Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Lab-on-a-Chip and Microfluidics Europe 2022

Lorena Diéguez's Biography

Lorena Diéguez, Leader of the Medical Devices Research Group, INL- International Iberian Nanotechnology Laboratory

Lorena Diéguez joined INL in 2014 as a Staff Researcher and is, since 2018, the leader of the Medical Devices research group. Her research is mainly devoted to Translational Medical Research in close collaboration with hospitals and focuses on the development of tools and solutions based on microfluidics, biosensors and nanotechnology towards early diagnosis and better understanding of diseases. She is also very interested in translating her technology from the lab to the clinic and is co-founder and CEO of the spin-off company RUBYnanomed in the field of liquid biopsy. Currently, she is also the Chair of the Working Group in Medical Devices at the ETPN (European Technology Platform in Nanomedicine). She obtained her Bachelors in Physics with a Major in Optoelectronics at the University of Santiago de Compostela in 2005, then completed her Masters in Nanotechnology at the University of Barcelona (UB) in 2007 and her PhD in Biosensors at the UB, the Institute for Bioengineering of Catalonia and the ETH Zürich. Her postdoc at the University of South Australia (2010-2013) was devoted to the study of rare cells from biological samples using microfluidics.

Lorena Diéguez Image

Optofluidic Devices For Disease Diagnosis

Tuesday, 21 June 2022 at 15:00

Add to Calendar ▼2022-06-21 15:00:002022-06-21 16:00:00Europe/LondonOptofluidic Devices For Disease DiagnosisLab-on-a-Chip and Microfluidics Europe 2022 in Rotterdam, The NetherlandsRotterdam, The

The capacity of microfluidic platforms as tiny labs transitioned from a potential to a reality as demonstrated in the past 20 years. The microfluidics community developed extremely advanced systems able to perform almost any chemical and/or biological lab protocol. However, in order to develop integrated lab-on-a-chip diagnostic platforms, it is crucial to couple microfluidic devices with detection strategies able to match the inherent properties of microfluidics: high-throughput, automation and miniaturization. One of those detection techniques is surface-enhanced Raman scattering (SERS) spectroscopy, an ultrasensitive and highly selective analytical technique with multiplexing ability. SERS is based on the use of plasmonic nanoparticles that act as nanoantennas and augment the very specific Raman signatures of molecules close to the nanostructured surfaces. We will show how the integration of different SERS sensing substrates and strategies within microfluidics and microdroplets offers a great flexibility for the diagnosis of several biological species and/or events. We will show examples in the context of liquid biopsy demonstrating the single-cell multiplex phenotypic analysis in a microdroplet, the detection of panels of mutations in cancer or the differentiation of cancer versus healthy cells. These approaches may be transferred to different analytical fields, such as the detection and discrimination of foodborne pathogens, bacteria or viruses in food or water samples.

Add to Calendar ▼2022-06-21 00:00:002022-06-22 00:00:00Europe/LondonLab-on-a-Chip and Microfluidics Europe 2022Lab-on-a-Chip and Microfluidics Europe 2022 in Rotterdam, The NetherlandsRotterdam, The